
Introducing Quantum Machine Learning

Author: Aroosa Ijaz

Reviewer: Patrick Huembeli

Quantum machine learning (QML) is a rapidly emerging field of immense industrial and scientific
interest. It beautifully merges the ideas and applications of machine learning with the enigmatic
principles of quantum physics. The meaning of learning can be thoroughly redefined due to concepts
like interference, entanglement and superposition. Many classical algorithms have already shown
promising speed-ups in data and time complexity when quantum systems are harnessed. However,
this new field is riddled with unanswered questions and considerable implementation challenges. In
these notes, you will:

● get acquainted with the basic terminology and definitions

● have a look at the past, present and future of quantum hardware

● learn about the meaning of learning in the context of quantum machines

● explore the various subcategories of research directions in QML

● look at basics of quantum variational learning

Table of Contents

1.1 WHY QUANTUM MACHINE LEARNING? 2

WHY SHOULD WE CARE? 2
HOW CAN QUANTUM MECHANICS HELP IN DOING MACHINE LEARNING? 3
CAN WE RETHINK EXISTING MACHINE LEARNING ALGORITHMS? 3
HOW CAN MACHINE LEARNING HELP IN DOING PHYSICS? 4

1.2 WHAT ARE NEAR-TERM DEVICES? 4

THE PAST 5
THE PRESENT 7
THE FUTURE 10

1.3 QUANTUM LEARNING 11

COMPLEXITY CLASSES 11
CLASSICAL COMPUTATIONAL LEARNING 13
QUANTUM COMPUTATIONAL LEARNING 15

1.4 CATEGORIES WITHIN QUANTUM MACHINE LEARNING 17

ML-ASSISTED QUANTUM PHYSICS 18
QUANTUM-ENHANCED MACHINE LEARNING 19

1.5 REFERENCES AND FURTHER READING 21

QML REVIEWS AND BASICS 21
NISQ DEVICES 22
QUANTUM LEARNING 22
CATEGORIES IN QML 23

1.1 Why quantum machine learning?

Let us imagine that one day David Deutsch (the father of quantum computing) drops by the Vector

institute of artificial intelligence in Toronto. He runs into Geoffrey Hinton (the father of deep learning)

and falls into a passionate discussion about quantum machine learning over coffee. Geoffrey asks

David about why this field is attracting so much interest. Let us try to think along Geoffrey’s line of

curiosity and list some follow-up questions. Some overarching questions are discussed as subsections

below.

Figure 1.1 – Geoffrey and David spark our curiosity about QML.

Why should we care?

Machine learning has grown rapidly in recent years due to an increase in computational power, data
availability and targeted algorithms and applications development. It will continue to play a huge role
in shaping technology and human life. With the increasing amount of data and saturation of Moore’s
law, however, improvement and speedups in classical algorithms and computation power will start to
saturate. It is important to explore how quantum physics can interact with this growing field, especially
as physicists diligently keep working towards realizing a universal quantum computer. Many quantum
algorithms have already been developed that show exponentially better performance for various
problems. Quantum machine learning can have a huge impact on how machine learning evolves over
the next decade. It can offer a different model of learning and computation. This does not necessarily
imply exponential speedups for all machine learning problems, however.

Moreover, with growing amounts of data, its storage and analysis for classical algorithms will start to
consume staggering amounts of energy and resources. It might be cheaper and environmentally more
friendly to use quantum memories and quantum routines for certain tasks in the long run. Quantum
processors will most likely be used as accelerators with classical computers; just as graphical
processing units are used today. This is because classical computers are very cheap and efficient at
executing most basic computation tasks. Conditions under which using quantum processors can pay
off are under research. Quantum machine learning does not require universal general-purpose
quantum computers. Physical hardware that can implement quantum learning algorithms is much

closer than we think, as we will see in section 1.2. Hence, it is important to explore what we can do
with these emerging quantum technologies.

How can quantum mechanics help in doing machine learning?

Quantum mechanics offers many “unintuitive” phenomena that are classically unparalleled. Let us
try to think of some of the ways in which these principles could potentially affect the capabilities of a
learning machine.

● Quantum computing provides a fundamentally different platform for computation. Are
quantum learning models computationally more powerful? Can entanglement and
interference give a quantum learner access to concept classes that a classical computer
cannot? Can quantum complexity and superposition lead to the process of learning a concept
with smaller data or query sizes? We will explore quantum learning theory in section 1.3.

● Some quantum algorithms, like Grover’s algorithm for unstructured search, are known to

be more powerful than their classical analogues. Would this also apply to quantum machine
learning models? Can parallelization and superposition result in smaller computation time,
steps and resource requirements?

● The phenomenon of entanglement is only evident in quantum states and cannot appear in
the classical world. Can exploiting this phenomenon help learn different or non-trivial
correlations in our data? Can this lead to finding patterns that cannot be replicated on a
classical computer?

● Any physical implementation of a quantum computer will have innate noise and realization of
comprehensive fault-tolerance capabilities are still decades away. Can we use this innate noise
in quantum systems in training quantum machine learning models to get better generalization
capabilities just as noise is used in classical machine learning to make models more robust and
generalizable?

● Neural networks provided with enough depth and data become universal function learners,
i.e. they can learn any function incumbent in the input data. What quantum models act as
universal learners?

● Optimization techniques are central to machine learning. What does optimization look like for
a quantum device? Can quantum systems work around the requirement of convexity that
plagues many classical machine learning methods?

● A crucial question that researchers continue to struggle with is explaining how classical
learning models exactly work; explainable models. For example, the theoretical understanding
of how neural networks really function and depend on depth and parametrization is still
limited. If we use quantum learners dictated by the laws of quantum physics, can these
provide explainable learning models?

● One of the leading arguments for the origins of quantum computing was that classical
computers are unable to simulate quantum systems. If used for this purpose, can emerging
quantum devices help solve existing problems in Physics and help reveal new fundamental
laws of nature?

Can we rethink existing machine learning algorithms?

Previously, we saw how new algorithms can be developed when using the physical laws of quantum
mechanics. Rather than creating new quantum machine learning algorithms, let us now try to think if
we can change only parts of existing classical machine learning algorithms to quantum ones.

● Machine learning and deep learning use linear algebra routines to manipulate and analyse
data to learn from it. Can we harness speed ups using the powerful tools of quantum systems
with their innate support for linear algebra?

● Quantum states are complex probability distributions and quantum measurements represent
sampling from these distributions. Can this naturally help in probabilistic machine learning
models where sampling from probability distributions is generally expensive?

● Distances or similarity between quantum states can be easily assessed in their Hilbert spaces
using inner product. Can this help in machine learning algorithms where computationally
expensive tricks and kernels have to be used to do this?

● Representing classical data as quantum states automatically performs a feature map from the
original data space to a high-dimensional Hilbert space. How can we exploit this? What
nonlinearities can be used in embedding classical data to quantum states? How do we cluster
or classify in these large Hilbert spaces with quantum states? Can this replace classically hard
or expensive kernels?

● Topological analysis of large sets of classical data gets increasingly expensive for classical
machines. How can we exploit complex topological spaces in quantum mechanics to analyse
data?

How can machine learning help in doing Physics?

The applications of classical machine learning algorithms are far-reaching, from genetics, drug
discovery and finance to online shopping and social policy. What about Physics? Can we exploit
decades of advances in classical algorithms to further Physics research? Can we use data-driven
learning techniques to understand complex and elusive problems in physics that cannot be solved
analytically or simulated with the current classical computers? For example, exotic phases of matter,
particle physics or complex field theories. Recently, more and more physicists have started to think
along these lines, as we will see in more detail in section 1.4.

These are just some of the questions that QML scientists are working on to assess what QML can offer.
Do any of these questions raise your curiosity?

1.2 What are near-term devices?

Excited to learn about what quantum machine learning research might entail, Geoffrey asks David if

implementing these ideas will only become possible with the advent of quantum computers. David

explains that this is a popular misconception and that scientists have made great progress in the

technological advancement of quantum devices in the recent years.

Figure 1.2 – David and Geoffrey talk about the NISQ era.

The past

The principles of quantum mechanics were formalized over the early twentieth century and were
mind-boggling enough to bother even Albert Einstein. As physicists continued to try to understand
quantum systems, analytic solutions became harder to achieve. The need to simulate these systems
became evident. With access to classical computers, limited cases could be simulated. However, the
resources required by classical computers for simulating quantum systems grow exponentially with
the size of the quantum system. Moreover, the dynamics and correlations in large many-body and
highly entangled systems remained elusive. A theoretical and experimental effort was globally started
after Yuri Manin and Richard Feynman proposed the idea of analogue quantum simulation in the
80s. This entails using a known and controllable quantum system to model the dynamics of an
unknown one. For example, if a set of atoms can be trapped and their interactions tuned using external
electromagnetic fields, we can use them to study different forms of matter.

This led to the birth of quantum computation; a subfield of Physics that encompasses all problems
where a quantum state is manipulated. Let us quickly recall that the fundamental unit of quantum
computation is the qubit - the analog of the classical binary bit. From quantum mechanics principles,
we know that a qubit state can represent a superposition over bit 0 and bit 1; it represents a
probability distribution over the two states. For example, consider a simple quantum system with just
two energy levels - this is understandably called Two-Level System (TLS) - where the ground state
can be labelled as state |0> and the excited state as state |1>. The system can be in any arbitrary α|0>
+ β|1> state, where α, β are complex numbers and must preserve the state unit-norm condition. This
very strange generalization of probability leads to another unique feature in quantum computation:
interference of probabilities that can be added and subtracted!

A major boost to this field came during the 90s when various new quantum algorithms that could
perform better than their classical counterparts were proposed. One of the most impactful examples
is the Shor’s algorithm that factors integers exponentially faster than any known classical
algorithm. This attracted a lot of attention - and investment - as the current online security protocols
depend on a classical computer’s inability to factor large integers in a reasonable amount of time. On
the other hand, tremendous technological advances - for example in microscopy, spectroscopy,
fabrication and nanotechnology - enabled scientists to isolate and manipulate the first small physical
quantum systems through the 2000s and 2010s. Let us not forget that this is a fundamentally
challenging problem to solve. It is not easy to perfectly isolate a qubit (remove all interactions between
a qubit and its environment) and also apply unitary manipulations to control it. Even a single stray
photon can lead to the wavefunction collapse by doing an “unintended” measurement.

The basic requirements for realizing a quantum computer were succinctly summarized by Physicist
David P. DiVincenzo in 2000. They are now called the DiVincenzo criteria:

• The most basic one is the ability to identify a physical quantum system where a qubit can be
used to encode quantum information.

• To implement any real computation, thousands of controllable qubits can be needed. So, the
choice of the physical system should allow for scalability to a large network.

• Workable characteristic time scales are essential. Let us recall the definitions of these time
scales and consider the Two-Level System (TLS) again. Assuming the system is in the ground
state, an external electric field can “drive” the system into its excited state. The system decays
back to the ground state after a certain time – called longitudinal relaxation time. This can be
due to spontaneous emission (vacuum fluctuations) or stimulated emission (keeping the
external field on). This puts the ultimate time limit on state measurement or readout as after
this time both the state and coherence information are lost. The other important timescale is
the transverse coherence time; the time it takes for the system to lose its phase or coherence
information to the environment due to dephasing processes. These could include interactions
with stray fields, lattice phonons, spin baths, random charges, strain or thermal fluctuations
in the system’s environment and so on. This puts a time limit on quantum operations or
manipulations that rely on coherent properties of the system.

• The ability to initialize the system in a desired quantum state helps us start any computation
with a known state.

• The ability to implement any unitary transformation (universal set of gates) and measure
specific qubits are also essential for a universal quantum computer.

In principle, any physical quantum system that supports mutually orthogonal states of a physical
property can be used. Some examples that are being explored so far include vacancy centers in
diamond, superconducting circuits, trapped ions, semiconductor quantum dots, photons, topological
qubits in nanowires and rare-earth ions trapped in crystals. Let us look briefly at some of these
candidates:

● Vacancy centres in diamond: These are lattice defect sites in diamond where “vacancy” refers
to missing Carbon atoms and “centers” refer to atomic impurities surrounding the vacancy
like Nitrogen, Silicon or Germanium. Many of these defects result in electronic states in
diamond’s band gap that can be used to form qubits. Experimental techniques like
fluorescence confocal microscopy can be used to detect and manipulate single defects in the
lattice. Diamond provides a scalable architecture, in principle, and can be easily integrated
into current silicon-based technology. A major drawback for this system is decoherence and
dissimilarity between multiple qubits due to localized noise (lattice phonons, coupling to
neighbouring nuclei spins and local impurities).

● Superconducting circuits: LC circuits with a capacitor and an inductor make a harmonic

oscillator where energy oscillates between capacitive and inductive forms. This holds even on
microscopic levels where the oscillator energy becomes quantized. As all energy levels in this
quantum harmonic oscillator are equally spaced, non-linear inductors (Josephson junction)
are used to get anharmonic oscillator. The lowest two energy levels are then used to encode
qubit states. This usually lies in the microwave frequency regime. To reduce noise and

dissipation, temperatures are reduced to nearly absolute zero and superconducting elements
are used. This architecture allows for scalability but suffers from crosstalk and noise in readout
electronics with increasing number of qubits. Moreover, using cryogenics makes this system
very expensive and non-portable.

● Trapped-ions qubits: Electromagnetically confining potentials are used to trap a group of

certain stable ions. These systems come close to the ideal TLS. Moreover, individual ions of
the same element are identical (no local irregularities like in solid-state qubits or fabricated
superconducting qubits) and can be manipulated using lasers. These qubits provide long
coherence times compared to many other qubit systems. Stray fields and trap
inhomogeneities lead to decoherence. Scalability is possible but gets limited by trap sizes
presently. It will be challenging to make traps large enough for thousands of ions (or millions
- as we will see later).

Note that adiabatic quantum computing is a different computation model with annealing-based
optimization instead of gate application and measurements. A quantum system prepared in the
ground state of a simple, known Hamiltonian can be weakly perturbed and slowly driven to the ground
state of the problem Hamiltonian. In 2011, this method produced one of the first commercially
available quantum computers by the Canadian company D-Wave Systems. Here, however, we will only
focus on gate-based quantum computing.

The present

With relentless hard work by academic groups over the last thirty years, the first small networks of
qubit systems have started to materialize recently. There is now a growing interest and investment
from the commercial sector as well. Aware of the impact quantum technology can have on
information and communication technology in the near future, many big technology companies like
Google, Microsoft, Intel and IBM have started their own research groups and developed deep
collaborations with academic research groups in the last ten years. A large number of start-ups in the
field have also recently sprung up and are raising huge investments.

This rapid progress has resulted in a wonderful new development: the number of qubits has grown
from less than 10 qubits and a few gates in isolated academic labs to 50 qubits and up to hundred
gates in commercial labs. IBM, Rigetti and Google are leading this effort with superconducting qubits.
Xanadu uses large coherent cluster states of light to encode qubits and offers room-temperature,
continuous-variable quantum computing. IonQ offers trapped-ion quantum computing. Microsoft is
working on topological quantum computing.

Many companies are now providing cloud access to their hardware due to its bulky and non-portable
nature. For example, in the case of superconducting qubits, fabricated chips with nanoscale circuits
have to be kept in huge dilution fridges at cryogenic temperatures. These fridges are very costly and
cannot be easily setup by anyone anywhere. They require complete mechanical, thermal and electrical
insulation support and also depend on the limited Helium-3 and Helium-4 reserves of our planet.
Hence, despite the time overhead in communicating over a cloud connection, cloud access makes
current devices more accessible, efficient and cheaper to use. Moreover, many companies (especially
new start-ups) are offering only quantum algorithms and/or quantum software services instead of
building up their own physical quantum computers. They can pay the bigger companies for the cloud
access and instead focus on solving new problems with the available devices. For example, Q-CTRL is
an Australian company that helps other quantum computing companies improve the quality of their
qubits by working on hardware error characterization. Another interesting example is the American

start-up QC Ware that plans to provide a unified cloud platform to connect to the various hardware
providers.

Figure 1.3 – Quantum computers are speculated to solve problems that can be really hard for classical ones.

This figure is taken from John Preskill’s 2012 paper that introduced the term “quantum supremacy” [5].

With 50 qubits, we start to enter a regime where classical computers cannot catch up anymore. Hence,
we are currently entering what is called Noisy, Intermediate-scale Quantum (NISQ) era, as the
Physicist John Preskill has aptly termed. We have noisy qubits without any error-correction and the
quantum system is large enough to not be considered classically “easy”. This opens up a whole new
frontier of unexplored opportunities! First things first, we can finally start to get the first experimental
evidence regarding quantum supremacy; the idea that quantum computers can perform decisively
better than the best classical computer for a certain task, see Figure 1.3. To be more precise, by the
term decisive here, we mean polynomial or super-polynomial (any function whose growth is
larger than a polynomially growing function), as we will see in more detail later. This has been
theoretically speculated as one of the distinguishing features between quantum and classical
computers for a long time. Tasks like simulating quantum systems, factoring and Fourier transforms
theoretically benefit from super-polynomial speedups. Aram Harrow and Ashley Montanaro put this
very nicely in [10] as:

“Supremacy experiments can be thought of as the computational analogue of Bell
experiments. Just as Bell experiments refute Local Hidden Variable models,
supremacy experiments refute the old Extended Church-Turing (ECT)

thesis, which asserts that classical computers can simulate any physical process
with polynomial overhead”.

Hence, this is not only important to justify the huge investments into building fault-tolerant quantum
computers, but it is also an important check to see that we understand quantum computational theory
correctly. If it turns out that we cannot find any task for which quantum supremacy can be proved,
we might have to reformulate quantum mechanical theory.

The physical verification for these claims, however, has been out of reach so far. An encouraging factor
is that many computational problems do not depend on the existence of a universal quantum
computer. One such example is boson sampling. To understand this concept, we can use the Galton
board - commonly used in statistics demonstrations. Let us assume bosons (for example photons) are
balls incident on a Galton board with multiple input funnels - as shown in Figure 1.4. The number of

collection buckets are assumed to be larger than the number of input funnels/photons. The pegs
represent a linear interferometer. Let us say we run our Galton board experiment and record the
output pattern in the buckets – for example the output pattern shown in Figure 1.4 is [0, 0, 2, 0, 1, 0,
0,1, 2, 0, 0, 0, 0, 0, 1, 1]. If we run this experiment enough times (maybe millions of times), we can
collect the full information about the probability distribution of all possible output patterns. In other
words, an output we get from a new run is essentially sampling from this probability distribution. Now,
let us say that I give you a certain output pattern and ask you how probable it is that we observe that
particular pattern in a new run. It turns out that this is a very hard question to solve for a classical
computer and it gets harder as this Galton board becomes larger. In practice, it is not easy to
implement boson sampling due to imperfect single-photon sources and photon-counting detectors. A
way around using single, indistinguishable photons is using gaussian states of light (like coherent
states) - as is done in gaussian boson sampling.

Figure 1.4 – Boson Sampling can be understood using a Galton board with multiple funnels. The crosses

represent pegs that scatter the incident balls into various collection buckets.

As we saw before, controlling quantum systems and introducing qubit-qubit interactions while
keeping them isolated is very challenging. It will be very encouraging to show that we can execute
quantum circuits for a desired computation with reliably low noise. Due to its importance, there is
currently a great effort led by early hardware providers to prove quantum supremacy for any task,
irrespective of how useful that task is. However, these efforts will also help in answering the question
John Preskill asked at that 25th Solvay Conference on Physics in 2012:

“Is controlling large-scale quantum systems merely really, really hard, or is it
ridiculously hard?”.

Any quantum supremacy experiment requires:

• a clear task

• a corresponding quantum algorithm

• a way to compare it to a classical algorithm (for verification of supremacy)

• verifying results and running the algorithm in the asymptotic limit (for large system sizes). This
might require huge time and memory resources (supercomputers, GPUs, aggregate RAMs).
This is because a general n-qubit state requires O(2n) space. Consequently, it is not easy to
verify the results of such an experiment - if it is giving the correct results and really is classically
hard.

Note that factoring is an exceptional example. If I give you a machine claiming that it is a quantum
computer that can implement Shor’s algorithm, you can easily verify this. If you run the integer X
through the machine and it outputs the factors (a, b), we can quickly check that X = a* b on our laptops.
This is because factoring belongs to the NP (Non-deterministic Polynomial) complexity class;
given an efficient method to implement the problems in this class, their solution can be checked in
polynomial time. Other tasks that we can use in quantum supremacy research are not this lucky. Many
tasks were proven to be less classically challenging than originally proposed. Researchers from Physics
and computer science backgrounds are, hence, currently working on defining well-suited tasks,
developing efficient verification methods and identifying the exact quantum/classical boundary -
especially for near-term devices. Examples of some verification methods include testing on smaller
systems or using statistics. Moreover, techniques like approximate simulation, dynamic programming,
Feynman paths (two-qubit gates are decomposed into single-qubit gates and circuit partitioned),
rejection sampling and Tensor network contractions can be used to implement bigger classical
simulations. These rapid developments are expected to bring about more results in quantum
supremacy research in the near future.

The future

The first positive experimental claim to quantum supremacy was reported in 2019 by Google, although
its validity was questioned by IBM and others, see [13], [14] in the references. Just as sampling from
the output distribution in boson sampling is classically hard, sampling from the output distribution of
a random quantum circuit is also hard for large circuits. A random circuit consists of application of
gates randomly drawn from the universal gate set (for example, any two-qubit entangling gate with
arbitrary single-qubit gates is exactly universal). This is the task that was implemented on a 53
superconducting-qubit state-of-the-art processor at Google. Great progress was shown in reducing
errors in applying one and two-qubit gates. They applied roughly 1000 single-qubit and 400 two-qubit
gates in each run, measured all qubits and stored the output pattern. For verification, smaller parts of
the same circuit were simulated on classical supercomputers and extrapolated. Many of the tricks
mentioned in the last section were employed to enhance classical computer’s simulation and memory
capabilities. They claimed that their processor took only 200 seconds to run and sample a random
quantum circuit a million times and that the same task would take 10,000 years on the finest classical
supercomputer! The second supremacy result was reported in December 2020. Researchers and
collaborators at University of Science and Technology of China used Gaussian Boson sampling to
demonstrate quantum supremacy. 50 indistinguishable gaussian packets of light (squeezed states)
with a 100-mode interferometer were used to show that the sampling tasks that their quantum setup
could do in seconds would take millions of years on the best classical computer.

So, what now? Where do we go from here? It is expected that the current NISQ devices will start to
double in size and power every few years. What can we do with these devices? These are questions
that are already starting to attract a lot of attention. With access to actual hardware of up to a hundred
qubits and few hundred gates, both young and seasoned researchers have started to play around with
these systems. Most likely, the quality and size of these devices is too low to implement the promising
applications of drug and material design. However, important insights can be gained about the kind
of noise present in the current hardware and how it affects any quantum computation. Hence, we can
use NISQ devices to help us in engineering better devices, improving circuit architectures and in
optimizing error-correction schemes as these devices scale. Another important thing to note is that
the field of quantum computation started with analogue quantum simulation, but these general-
purpose devices can essentially be used to implement any computation or simulate the dynamics of

any quantum system, digital quantum simulation. Noise-resilient applications are being

actively researched. The most relevant one for us is quantum machine learning. In the long term, it is

pertinent that the quality of gates and qubits becomes much better and quantum random
access memories are developed.

Why do we have to work with noisy devices? Why don’t we correct for errors already? This is because

error identification and error correction are not trivial for quantum states. Due to the no-cloning
theorem, quantum states cannot be perfectly copied. Additionally, errors cannot be identified
without “looking” at the state, which in itself is destructive. Hence, simply using data redundancy like
we do in classical computers is not possible. Error-correction protocols that use clever redundancy
techniques for both bit and phase errors have been proposed over the last couple of decades. In order
to implement fault-tolerance and error-correction, however, we might need millions of quality
physical qubits.

1.3 Quantum learning

Quantum machine learning is an application of quantum computing. But what do we exactly mean

by learning? What is a learning model and what does it learn? Let us dive a bit deeper into this.

Complexity classes

In the last section, we came across the term NP complexity class. Complexity is a way of studying how
different computational problems consume resources (time or memory). The harder it is to solve a
problem, the more resources it uses. Problems can be categorized into types. Some examples include:

● Decision problems are basically yes/no questions that output a single bit; “is x a prime
number”. These are most commonly used in deriving complexity theoretic arguments.

● Function problems are similar to decision problems, but the output can be a more complex
object; “what is the binary representation of a decimal number x”

● Search problems are similar to function problems but there might be more than one correct

answer; “find object y in object x”

● Counting problems are related to questions based on counting the number of answers; “how
many cycles are present in graph G”

● Optimization problems are concerned with finding the best answer to a question; “what is the

best way to divide a graph G into two smaller graphs”

The other ingredient is the type of computational model that is being used to solve the problem. This
is the abstract representation of a physical computing device and its underlying working principles.
Some examples include:

● Deterministic Turing machine

● Non-deterministic Turing machine
● Probabilistic Turing machine

● Quantum Turing machine

Conventionally, asymptotic behaviour with respect to input size is used to compare various algorithms
by using the Big O notation. For example, an algorithm that uses a constant amount of resources
no matter the size of input, is said to scale as O(1). Figure 1.5 shows some of the popularly used
functions.

Figure 1.5 – Functions commonly used to derive upper bounds when using the Big O notation.

The complexity of quantum algorithms can similarly be quantized using the number of
operations/gates used. To facilitate comparison, a universal gate set can be chosen. It does not matter
which set you choose as you can convert one set to the other using a constant amount of resources
anyway. All gates can then be decomposed in terms of these “elementary” gates and counted. An
algorithm is considered efficient if its running time, let us call it T, is a polynomial function of input
size N, i.e. T(N) = f(Np), where f is some polynomial function and p is a constant that represents the
degree of the polynomial function. Defining complexity classes is a way to group similar problems that
might require similar amounts of resources. In Table 1, we describe some of the popular classical and
quantum complexity classes. The classes we mostly work with are P and BQP as they contain the
efficient algorithms. Space complexity can also be considered but we will not go into its details here.

Class Classical/Quantum Brief Description

P Classical Can be solved by a deterministic Turing machine in

polynomial time

EQP Quantum Can be solved by a Quantum Turing machine in

polynomial time with probability 1

BPP Classical Can be solved by a probabilistic Turing machine in

polynomial time with probability at least 2/3

BQP Quantum Can be solved by a quantum Turing machine in

polynomial time with probability at least 2/3

NP Classical Solution can be checked by a deterministic Turing

machine in polynomial time

MA Classical Solution can be checked by a probabilistic Turing

machine in polynomial time with probability at least 2/3

QMA Quantum Solution can be checked by a quantum Turing machine

in polynomial time with probability at least 2/3

EXP Classical Can be solved by a deterministic Turing machine in

exponential time

Table 1.1 – Some popularly used classical and quantum time complexity classes. Note that P  BPP  BQP 

QMA  EXP, where A  B means that A is a subset of B.

Classical computational learning

Let us consider the following scenario: David is trying to figure out a certain function f that Geoffrey
already knows. One way to learn how it looks is to guess it by looking at function values for various
inputs x (for example, x1, x2, x3, …). As shown in Figure 1.6, Geoffrey can mark the output of the
function, f(x), for different values of x that David shouts out. After many such back-and-forth rounds
between them, David can start to see how the function f looks like. How many questions would David
have to ask in order to guess the correct f? How much time and memory would it take? What functions
can he learn? What are his limitations? These are the questions that underlie learning theory. This
particular method of learning by “querying” a function oracle is called exact learning, where in our
example Geoffrey is the function oracle.

Figure 1.6 – David tries to learn how function f looks like by looking at its output value for different x. For

every value of x that David shouts out, Geoffrey - the function oracle - can plot the function output.

If function f belongs to a certain known class of functions, then we are essentially querying this class

to figure out which member of this class is the target function. These queries are fittingly termed

membership queries. For example, classes of Boolean functions that map n-bit strings to 1-bit

strings (called concept classes) are frequently used in learning theory. A first safe guess is that to get

the complete picture of a concept that acts on n-bit inputs, we should query it on all 2n possible n-bit

strings. Can we do any better? Analogous to time complexity that we saw earlier, the study of the

required number of queries is termed query complexity. A concept is called efficiently learnable if

it can be learned in a polynomial number of queries (the number of queries grows polynomially with

the system size). Examples of concept classes that are polynomial membership-query learnable

include some restricted classes of DNF (or CNF) formulas. DNF (CNF) stands for Disjunctive

(Conjunctive) normal forms, respectively. This is just a way of writing Boolean functions using only

additions and multiplications on grouped Boolean variables. For example, (𝑏1 ∧ 𝑏2) ∨ (𝑏3 ∧ 𝑏4) ∨

(𝑏5 ∧ 𝑏6) is a DNF formula, where 𝑏1 to 𝑏6 are Boolean variables. This is an example of a 2-DNF

Boolean expression; when we say k-DNF, it means that each grouped term contains k Boolean

variables. General learnability of DNF and CNF classes remains an open question and is widely studied

as any Boolean function can be expressed in this form. Examples of exact-learnable DNF subclasses

include class of log n-DNF ∩ log n-CNF and monotone DNF (DNF expressions that can not contain any

Boolean variable with negation) Boolean formulas. Other examples include monotone decision lists

(list of pairs of Boolean functions). Note that, in general, a concept that is polynomial-query learnable

is not necessarily polynomial-time learnable.

The technical term for the function we are trying to learn is target concept and it is usually labeled by
the letter c. In reality, we do not always have access to an expert oracle like Geoffrey who knows the
target concept c and can help us learn it over an instance space 𝝌 (space of input data). The idea of
machines learning concepts from data with a deduction procedure was generalized by Leslie Valiant
in 1984. He introduced the Probably Approximately Correct (PAC) learning method. Assuming
a concept class like before, we are given data points according to an unknown distribution D and
access to an oracle that can tell us their output labels (0 or 1). Let us call these PAC samples (x, c(x)).
In literature, these are technically called examples and the oracle is called a random example oracle
but let us not use these terms here to avoid any confusion. Next, a hypothesis set of functions 𝑯 is
chosen. This is a set of guess functions and can be finite or infinite. For example, a neural network
with infinitely different parameter settings represents infinitely many guess functions. For now, we
will assume it is finite. For h ∈ 𝑯, the learner compares h(x) to the given label c(x) for various instances
x ∈ 𝝌. Note that we assume that all PAC samples are independent and identically distributed (i.i.d).
This is crucial for both learning and generalization:

• we will be learning over a “representative” set of points

• the learned function will only generalize to unseen datapoints (the whole instance space, in
principle) if we assume that both seen and unseen data have the same distribution, albeit
unknown.

How many data points should we check a hypothesis on? As the name of the learning method
suggests, the learned hypothesis (usually called g) should approximate the target function up to some
tolerated error (of our choice) with high probability. The probability that any hypothesis h and c differ
by more than our tolerance is upper bounded by Hoeffding’s inequality, which basically says that
if we want to set a small tolerance for error, we have to use more PAC samples during the learning
procedure. Moreover, the complexity of the hypothesis set (number of hypotheses in 𝑯) also effects
learning; the more hypotheses you have to check, the more errors you can accumulate. This
complexity is characterized by the Vapnik-Chervonenkis (VC) dimension. This is the largest
number of datapoints for which 𝑯 can find all possible dichotomies (all possible ways of dividing the
set of inputs based on their labels). Hence, this parameter directly reflects the complexity of the
concept class; if the data looks very irregularly distributed, VC dimension will be higher, and we will
need more samples to get to know the target function.

Why not use an infinite 𝑯 every time? Other than the cost factor, we also do not want to overfit the
data. As we will always be using a finite subset of data from the instance space to make our guess of
the target function, there is no guarantee that any new datapoints will behave the same way as our
“training” subset. Hence, the learned hypothesis g can “generalize” with high probability by using the
right number of PAC samples and the right size of 𝑯 (using polynomial number of unique dichotomies
or a finite VC dimension). The number of PAC samples required to ensure a certain accuracy and
confidence over all target concepts and distributions is termed sample complexity. We can guess

now that sample complexity 𝑺 ∝
𝒅𝜹

𝝐
, where 𝒅 is VC dimension, 𝝐 is the error tolerance and 𝜹 is the

confidence. A polynomial sample complexity implies PAC-learnability. This holds for any learning
algorithm, target concept, input data distribution and error tolerance. Note that we may actually
never know the target concept as 𝝌 can be infinite and it is also possible that c ∉ 𝑯.

PAC learning lays the foundation for classical machine learning, specifically supervised machine
learning. However, the latter lacks unlimited access to the instance space and sample oracle.
Moreover, PAC model gives the worst-case sample complexities over all concepts and distributions on
the instance space. In practice, we are only given a fixed number of noisy labelled samples drawn from
some unknown joint probability distribution Dx,y without any notion of a target concept, where y is
commonly used to represent the output/label. Hence, depending on the application, we choose a
learning model (hypothesis set + learning algorithm) and use risk minimization on custom error
functions (instead of using probability of making errors on drawn examples) such that we get a small
training and generalization error for the given data. This approach falls along the lines of statistical
learning theory. Many other learning models like agnostic model, statistical query model and others
based on algorithmic learning theory and Bayesian inference have also been theorized.

Quantum computational learning

The development of the corresponding quantum learning theory is still an active area of research. A
popular conception is that QML will be able to provide speed-ups in machine learning by reducing
time, sample or query complexity for various learning algorithms. The theoretical and empirical
evidence for this claim, however, is still lacking. The first obvious thing we can say is that any concept
class that is quantum efficiently learnable must also be classically efficiently learnable. This should
hold for any learning model; exact, PAC or any other. Recall that in these models, learnability is defined
in terms of polynomial number of queries/samples. Time complexity is a different factor to consider,
and we will come to this point in more detail later.

Let us first look at the quantum exact learning scenario. Again, we can assume a quantum oracle that
knows all target class functions, can answer membership queries if we give it an input and helps us
exactly learn the target function with high probability. The inputs are quantum states |𝑥⟩. If we use
concept classes like before, 2n n-bit input strings become 2n computational n-qubit basis states;
|00 … 0⟩, |00 … 1⟩ to |11 … 1⟩. We can read off the function label c(x) when we use quantum input
states by using an ancilla qubit (with a known bit value) as shown in Figure 1.7.

Figure 1.7 – A clever method to get answers from the quantum membership query oracle in the exact

learning model, where  represents bit-wise addition modulo 2 operation (like a XOR gate).

Now, for a quantum oracle in this setting, given a superposition on the input states, we can get an
output superposition over all corresponding labels. This might initially suggest that the quantum
membership-query complexity can be significantly smaller than the classical one because a single
query to the oracle gets us all the information we need. However, let us not forget that, firstly, upon
“looking” at the oracle output, we can only “see” one label at a time. Secondly, the query complexity
also depends on the complexity and size of the target class. If there are a lot of functions to check or
if it is hard to distinguish between the different member functions in the class, we have to make more
queries to exactly pinpoint the target one. It was formally proven by Rocco Servedio and Steven
Gortler in the early 2000s that quantum learning models cannot achieve better than polynomial
speedup in query complexity for the exact learning setting compared to classical learning models. For
example, if we convert exact learning problem into an unstructured search problem over a space of

functions, we can get polynomial speedup using Grover’s search algorithm; we use O(√𝑁) instead of
O(𝑁) queries, where 𝑁=2n for {0,1}n instance space. Another example is quantum Fourier sampling
using Bernstein-Vazirani algorithm on a class of linear functions defined on n-bit strings; we use O(1)
instead of O(𝑁) queries. This generalizes to any class of k-Fourier-sparse n-bit Boolean functions. Note
that a polynomial speed up might not seem impressive at first but for applications like data science, it
can potentially reduce data requirements from billions to millions.

We see similar results in the quantum PAC learning model. This was proposed by Nader Bshouty and
Jeffrey Jackson soon after the Shor algorithm came out in the late 90s. The quantum PAC sample can
now be in a superposition over all the PAC-samples (x, c(x)) in the instance space with the data

probability distribution D, i.e. ∑ √𝐷(𝑥)|𝑥, 𝑐(𝑥)⟩𝑥 ∈{0,1}𝑛 . However, keep in mind that it can be costly

to prepare and measure many copies of input states in superposition from classical data. This is
sometimes called the “input problem”. It is, however, possible that they are naturally generated from
some quantum process or experiment, in which case we might benefit more from quantum learning
algorithms. A hypothesis set consists of measurements on these states. Again, we can set custom error
tolerance and confidence level for approximately learning the target concept. The sample complexity
is now in terms of the number of copies of quantum PAC-samples required. It has been shown that
quantum PAC learning models cannot achieve better than constant speedups in sample complexity
compared to classical ones.

At first, it might seem that there is no learning problem which can be solved using significantly fewer
quantum queries or samples than classical ones. In fact, under certain assumptions on distributions,
quantum sample complexity can be further improved. Moreover, learning is not limited to functions
in learning theory. Some learning problems are set up to learn the unknown data distribution instead
of a target concept over the PAC samples (density modelling) and some only want to learn how to
produce similar looking samples (generative modelling). For example, it was recently shown that
for generative modelling, the distribution concept class (class of all probability distributions over the
n-bit Boolean instance space) of discrete probability distributions is quantum PAC-efficient learnable

but not classical PAC-efficient learnable. Moreover, many areas and applications of Physics require
learning of a quantum state (quantum state tomography), a Hamiltonian or a quantum channel
(quantum process tomography). For example, to exactly learn all the amplitudes of a n-qubit quantum
state, we need O(2n) measurements. This will scale exponentially as the number of qubits grows. In
2007, Scott Aaronson extended the PAC learning model which approximated the state up to an error
using O(n) measurements. Here, the hypothesis set was chosen to be a set of two-outcome
measurements instead of functions and for every measurement (hypothesis), the expectation value
of the state was checked instead of the label, see [28]. In another recent example, models that want
to learn to predict the outcome of any physical process (represented by unknown quantum CPTP
process ℇ) on a given classical data were considered. It was shown that although both classical and
quantum learning models required similar number of circuit runs and had similar average error in
prediction, exponential reduction in the number of quantum circuit runs was possible for worst-case
prediction, see [29]. These are theoretical proposals, however, and require functional quantum
memories and fault-tolerant quantum computers for their verification. We will look at some practical
applications of machine learning in Physics in the next section.

What about time-complexity? The time it takes to run an algorithm can also be used to separate
efficient learnability of classical and quantum learners. In other words, it is possible that a class has
polynomial sample complexity, but its learning algorithm is highly time-consuming. Also note that,
unlike sample complexity, a class that has a polynomial-time quantum learning algorithm does not
guarantee a polynomial-time classical analogue. These learning problems belong to the BQP
complexity class. Hence, this might be one of the promising areas where we can hope to find speedups
in quantum machine learning! Over the last decade, a few such algorithms have already been
proposed that suggest up to exponential speedups in time complexity. These include QML algorithms
based on Grover and HHL algorithms for clustering, classification, principal component analysis and
pattern matching. However, these speedups are only promised under certain conditions, some of
which are not practically achievable, especially in the near-term. Below we mention a couple of
theoretical examples from the few known examples of such classes. For example, quantum PAC-
learning the class of k-term DNF Boolean formulas from uniformly distributed data is time-efficient;
this is not possible classically without membership queries, as we saw in the last section. Another
example is learning classes that depend on factoring – like classes built on factoring Blum integers or
classes built on one-way functions popularly used in cryptography - where Shor’ algorithm can provide
speedups to the quantum PAC learner. For the interested readers, see [23]-[27] and references therein
for more examples and details of other learning models like quantum agnostic model and quantum
statistical query model. The latter is especially interesting as it better relates to the current
implementation of quantum learning algorithms. Many open questions in quantum learning theory
remain like extending the stated claims to other function classes, the generalization bounds of
quantum learning models, the role of entanglement in learning, the general learnability of NISQ
devices and potential advantages in learning when classical data is encoded into quantum states.

1.4 Categories within quantum machine learning

There is no one clear definition of quantum machine learning but we can make our lives much easier
by defining subcategories in it. Let us try to explain this by continuing with our story. Let us say that
before leaving, David and Geoffrey decide to stay in touch and collaborate in their research. At the
Vector institute, Geoffrey works on developing theory and applications of machine learning using
classical data. On the other hand, David runs a lab where his students study quantum mechanical
systems to understand the laws of nature. Now, they can collaborate in many ways. One way they can
collaborate is by exploiting the vast classical machine learning techniques to discover the underlying
connections in quantum data (data produced in quantum experiments and theory). This line of work

is generally termed ML-assisted quantum Physics. In another way, Geoffrey can call up David
and communicate his data to him, who can try if seeing this data through the lens of quantum
mechanics can help learning form it in any way. This approach to QML research is generally termed
quantum-enhanced machine learning. However, If David applies machine learning algorithms
based on quantum mechanical principles to quantum data, this comes under the umbrella of what is
generally termed fully-quantum QML. Let us look at these in a bit more detail.

ML-assisted Quantum Physics

Over the last decade, data driven learning has found a strong foothold in many areas of science
including Physics. From decoding data produced at CERN to developing new materials and discovering
Black holes, the applications of machine learning in Physics are numerous and fast-increasing. We will
mention only a few examples here from quantum Physics that use various supervised, unsupervised
and reinforcement machine learning techniques.

• For example, to develop new drugs, we need to know the candidate molecules: from their
energy levels to their chemical and thermodynamic properties. However, solving the time-
independent Schrodinger equation - that provides us with the energy level diagrams - is
analytically possible for only a few small molecules. Experimentally verifying the energy scales
and chemical properties like solubility and toxicity of millions of molecules can be very costly.
In the last decade, many researchers have employed machine learning models for help in this
regard. For example, neural networks have been used with huge success to predict
atomization energies of organic molecules by training them on a subset of molecules with
known properties. The resulting computational cost and accuracies have been much better
compared to traditionally used density-functional theory. This has been extended to virtual
screening for drug development where chemical space is explored to identify new drugs based
on structural and chemical similarity to known drugs. Graphical neural networks have shown
a lot of promise here. This can save pharmaceutical companies billions of dollars as the
chemical space is extremely large and experimental search for new drugs can get very
expensive.

• Other than quantum chemistry, condensed-matter and many-body Physics has also been
benefiting from machine learning recently. Many-body quantum systems are systems with
multiple interacting quantum particles. We come across these systems in many natural
settings; for example, when studying strongly correlated many-body systems (like
superconductors and magnets), investigating phases of matter and while designing new
materials and drugs. Calculating and even simulating the huge wavefunction and its dynamics
becomes exponentially harder with the system size. Note that this can be a hard task even for
quantum computers. Exactly simulating the dynamics of a gas of electrons, for example, can
require impossible amounts of resources on a quantum computer as well. In 2017, two
ground-breaking results came out where neural networks were successfully used to represent
many-body wavefunctions, to study their dynamics and to identify their phase transitions, [33-
34]. These are highly non-trivial tasks to solve. The nodes in the input layer of a neural network
were associated with the many-body system configuration and the weights in the network
were allowed to be complex numbers. As an example, let us consider an interacting spin
system spread on a 2D grid (2D Ising model). At low temperatures, the spins will interact to
align with each other and result in ferromagnetism. If we slowly increase the temperature, we
disturb the spins and effect the resulting macroscopic magnetism. A transition point occurs at
some critical temperature, where the system becomes paramagnetic. By training the network
with data of spin configurations above and below the transition point, neural networks could
be taught to identify the phase transition. This can play a huge role in assisting physicists when

it comes to complicated quantum systems for which analytical and/or approximate solutions
are very hard to obtain. Consequently, these “self-driving laboratories” are becoming
increasingly popular in materials and Physics research. See the review [35] for more details
and examples. Note that variational quantum algorithms also offer huge promise for many-
body and quantum chemistry problems mentioned above.

• Machine learning has many uses in quantum computing as well. One important application
relates to noise. This can take various forms like predicting, correcting and mitigating noise.
For example, if we take a near-term quantum device and implement a series of gates, its
results will have noise which is hard to track; we cannot know with certainty which qubit and
which gates went through what noisy processes, like gate implementation errors or qubit
dephasing etc. Moreover, the hardware noise (like stray fields, crosstalk, temperature
gradients, charge fluctuations etc.) can vary across both individual runs and devices. Hence,
noise models for even a simple circuit can be quite complicated and are hard to formulate
mathematically. Machine learning models can be used to learn and predict any device-specific
noise models by first gathering data from many experimental runs and comparing it to
expected data. The learned noise can then be accounted for in the observed results. These
techniques can also be extended to implement predicted feedback and correct qubits against
decoherence in real-time without having to do any measurements, see [37] as an example.
This can play an essential role in improving and scaling near-term quantum devices in the near
future. Furthermore, many proposals for using deep learning and reinforcement learning
techniques to uplift quantum error-correction have come out in the last 4-5 years. Error-
correction protocols for quantum information suggest that a single bit of information is
encoded into multi-qubit topological states (called surface codes). Measurements are done
on these qubits (usually on a subsystem) to reveal what errors could have happened. The non-
trivial task of learning the error sequence and then correcting it has been shown to be
successfully exported to machine learning for various “encodings”.

Other applications include automating both the optimization and design of quantum experimental
setups (manual quantum control is complicated, often inaccessible and time consuming), state
tomography (which needs exponentially many measurements otherwise), assisting in designing
optimal measurement strategies and estimating unknown parameters from measurement results
(quantum metrology), aiding in classical simulation of quantum systems and discovering new ways of
expressing Physical laws. See reviews in [30] and [41] for more details.

Quantum-enhanced machine learning

The term “quantum-enhanced machine learning” is often used when quantum devices run classical
data for machine learning. However, simply running classical data through a quantum learning agent
does not necessarily guarantee any performance improvements as we already saw in the last section.
Hence, under this field, here we will only look at quantum learning algorithms that offer speedups (in
computational complexity) to known classical machine learning algorithms. These speedups majorly
come from representing 𝑵 bits of classical information using 𝐥𝐨𝐠𝟐 𝑵 qubits and from incorporating
quantum Basic Linear Algebra Subroutines (qBLAS) like Fourier transform, inner products,
matrix diagonalization, exponentiation and inversion that can be implemented exponentially faster on
quantum computers. Variants of Grover’s search are also popularly used in this regard. Note that these
speedups might not be applicable in the near-term as qBLAS generally require a universal fault-
tolerant quantum computer, large number of “perfect” qubits and access to a QRAM.

Let us look at some examples:

• Quantum Principal Component Analysis (QPCA): Principal Component Analysis or
dimensionality reduction is commonly used to preprocess data in classical machine learning.
Rather than using all given features, only the most significant features are chosen. This process
involves looking at the correlation between all given features and choosing (or making) ones
that carry most information about the data and are least correlated with each other. This
requires computing the eigen values of the covariance matrix of all features which scales as
O(d2), where d is the dimension of each feature vector. In 2013, Physicist Seth Lloyd and his
colleagues proposed a clever algorithm for QPCA where the quantum ensemble 𝝆 that
represents embedded classical data is used as the covariance matrix. Its eigen-decomposition
is then done by exponentiating 𝝆 and using this in the quantum phase estimation routine.
When measured, the largest eigenvalues are observed with higher probability. QPCA can be
performed in time polynomial in log(d) [42].

• Classification and clustering: Given labelled data, Support Vector Machine for binary
classification finds two parallel lines (hyperplanes) that mark maximally separating area
between the two classes. Given M d-dimensional data vectors, the algorithm essentially
converts this into a constrained problem that results in a set of linear equations involving dot
products of pairs of all data vectors. This scales polynomially in O(Md). If the data is not linearly
separable, it is mapped to higher dimensional spaces using feature maps. For Quantum

Support Vector Machine (QSVM), given we can efficiently prepare, store and retrieve
classical data as quantum states in a QRAM, HHL algorithm can provide exponential speedup
in solving these linear equations [43]. A QSVM variant based on Grover’s algorithm has also
been proposed. A similar speed up is seen for unsupervised clustering algorithms. On
identifying a centroid for each cluster, we assign each data points by assessing how close or
similar it is to the centroid. Here, we can exploit quantum computers for their faster inner
products and distance measures (scales as O(logd) [44].

• Quantum Boltzmann machine (QBM): An unsupervised probabilistic learning model that
benefits from quantum principles is the Boltzmann machine (BM). It is basically an undirected
graph/neural network of random binary variables whose output mimics Boltzmann probability
distribution and whose energy mimics that of an Ising model in thermal equilibrium.
Optimizing this algorithm corresponds to learning edge weights that produces low energy
outputs for the desired task, which is usually to estimate the data distribution or to generate
samples similar to input data distribution. Training BMs is generally quite hard as calculating
partition functions can be very expensive. Sampling methods are often used for its estimation.
In QBMs, the nodes become Pauli operators resulting in the network representing a many-
body quantum Hamiltonian with a density matrix based on the corresponding partition
function. QBMs can only be exactly evaluated on quantum computers, simulating QBMs on
classical computers is very hard, even with sampling methods. Hence, variational approaches
are used to solved these. These models have been proposed to be more expressive than their
classical counterparts and are an active area of research.

• Gradient-based optimization: this technique is vital to the working of various classical machine
learning models like deep neural networks. Moreover, as stated before, most VQAs also use
gradient descent/ascent optimization and export their parameter optimization to classical
computers. Quantum gradient algorithms do exist but generally require fault-tolerant
quantum computers. Given access to a large number of qubits and assuming smooth
functions, a Quantum gradient-descent algorithm that uses quantum Fourier transform
and Grover’s search to compute gradients was recently proposed [46]. For d-dimensional data

points, it offers quadratic speedup both in d and the number of random initializations of the
algorithm required to check for local optima.

• One of the most significant QML algorithms are Variational Quantum Algorithms

(VQAs) (sometimes also termed Hybrid Quantum-Classical algorithms). These directly
borrow from the working principle of classical machine learning where a parametrized model
is optimized using data to learn a certain task. Here, the model is a parametrized quantum

circuit (PQC), and the task is to generally construct/learn a desired quantum state or
Hamiltonian. Parameter optimization tasks can be exported to classical computers - although
the usefulness of this export and possible speedups is still under research. This has led to the
birth of quantum variational learning. The elements of variational learning include
quantum circuits, quantum embeddings (how to represent classical data as quantum states)
and quantum. Some notable VQAs include Variational Quantum Eigensolver (VQE), Variational
Quantum Simulators (VQS) and Quantum Approximate Optimization Algorithm (QAOA). Let
us also note that machine learning is not limited to inspiring PQCs. Interestingly, machine
learning techniques can also be directly employed to improve the training of VQAs. For
example, classical recurrent neural networks were recently used in helping find good
initialization strategies for quantum neural networks [40].

Other examples include efficient data fitting for “Big data” [47] and quadratic improvements in
learning efficiency - the number of interaction steps between the learning agent and environment
needed to learn to obtain the rewards with high probability - in reinforcement learning [48].

1.5 References and Further Reading

[0] M.A. Nielsen and I.L. Chuang. Quantum Computation and Information. Cambridge University
Press, second edition, 2000.

QML reviews and basics

[1] P. Wittek, Quantum machine learning: what quantum computing means to data mining
(Academic Press, 2014)

[2] M. Schuld and F. Petruccione, Supervised Learning with Quantum Computers, Vol. 17 (Springer,
2018)

[3] Biamonte J. et al. 2017. Quantum machine learning. Nature 549, 195–202.
(doi:10.1038/nature23474)

[4] Carlo C. et al, 2018. Quantum machine learning: a classical perspective. Proc. R. Soc.
A.47420170551 (http://doi.org/10.1098/rspa.2017.0551)

http://dx.doi.org/10.1038/nature23474

NISQ devices

[5] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on
Physics (2011), arXiv:1203.5813

[6] Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
(https://doi.org/10.22331/q-2018-08-06-79)

[7] Shor, P.W. (1994). "Algorithms for quantum computation: discrete logarithms and
factoring". Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput.
Soc. Press: 124–134(doi:10.1109/sfcs.1994.365700)

[8] L. Grover, “Quantum mechanics helps in searching for a needle in a haystack”, Phys. Rev. Lett. 79,
325 (1997), arXiv:quant-ph/9706033, https://doi.org/10.1103/PhysRevLett.79.325.

[9] DiVincenzo, David P., "The Physical Implementation of Quantum Computation". Fortschritte der
Physik. 48 (9–11): 771–783 (doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-
E)

[10] Aram W. Harrow and Ashley Montanaro, Quantum Computational Supremacy,
https://arxiv.org/pdf/1809.07442.pdf

[11] S. Aaronson and A. Arkhipov, The computational complexity of linear optics, arXiv:1011.3245
(2010).

[12] Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy using a programmable
superconducting processor. Nature 574, 2019.
https://doi.org/10.1038/s41586-019-1666-5

[13] https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/

[14] Edwin Pednault et. al, Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore
Circuits. https://arxiv.org/pdf/1910.09534.pdf

[15] Sergio Boixo et. al, Characterizing Quantum Supremacy in Near-Term Devices,
https://arxiv.org/pdf/1608.00263.pdf

[16] Igor L. Markov et. al, Quantum Supremacy Is Both Closer and Farther than It Appears,
https://arxiv.org/pdf/1807.10749.pdf

[17] Riling Li et. al, Quantum Supremacy Circuit Simulation on Sunway TaihuLight,
https://arxiv.org/pdf/1804.04797.pdf

[18] Han-Sen Zhong et. Al, Quantum computational advantage using photons, Science, Vol 370, 2020

Quantum learning

[19] Bernstein, E., and Vazirani, U. Quantum complexity theory. SIAM Journal on Computing 26, 5
(1997), 1411–1473

https://en.wikipedia.org/wiki/Doi_(identifier)

[20] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984

[21] Michael Kearns and Umesh Vazirani, An introduction to computational learning theory, MIT
Press, 1994

[22] Abu-Mostafa, Yaser S., Learning from Data: A Short Course.

[23] Hellerstein, L., Raghavan, V., Pillaipakkamnatt, K., & Wilkins, D., How many queries are needed
to learn? Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing,
1995.

[24] Srinivasan Arunachalam, Quantum Algorithms and Learning Theory, PhD thesis, Universiteit van
Amsterdam, 2018.

[25] Nader Bshouty and Jeffrey Jackson, Learning DNF over the uniform distribution using a
Quantum example oracle, COLT, 1995

[26] Servedio, R. A., and Gortler, S. J., Equivalences and Separations Between Quantum and Classical
Learnability. SIAM Journal on Computing, 33(5), 1067–1092, 2004

[27] Srinivasan Arunachalam et. al, Quantum statistical query learning, 2020.
https://arxiv.org/pdf/2002.08240.pdf

[28] Scott Aaronson, The Learnability of Quantum States, 2007 https://arxiv.org/pdf/quant-
ph/0608142.pdf

[29] Hsin-Yuan Huang, Richard Kueng, and John Preskill, Information-theoretic bounds on quantum
advantage in machine learning, 2021 https://arxiv.org/pdf/2101.02464v1.pdf

Categories in QML

[30] Giuseppe Carleo et al., Machine learning and the physical sciences, Rev. Mod. Phys. 91, 2019

[31] M Rupp, A Tkatchenko, KR Müller, OA Von Lilienfeld, Fast and accurate modeling of molecular
atomization energies with machine learning, Physical review letters, 2012.

[32] Wen Torng and Russ B. Altman, Graph Convolutional Neural Networks for Predicting Drug-
Target Interactions, J. Chem. Inf. Model, 2019

[33] Giuseppe Carleo and Matthias Troyer, Solving the quantum many-body problem with artificial
neural networks, Science, Vol. 355, 2017

[34] Juan Carrasquilla and Roger G. Melko, Machine learning phases of matter, Nature
Physics volume 13, 2017.

[35] Juan Carrasquilla, Machine Learning for Quantum Matter, 2020,
https://arxiv.org/pdf/2003.11040.pdf

https://arxiv.org/pdf/2003.11040.pdf

[36] Alexander Zlokapa and Alexandru Gheorghiu, A deep learning model for noise prediction on
near-term quantum devices, 2020, https://arxiv.org/pdf/2005.10811.pdf

[37] Sandeep Mavadia et al., Prediction and real-time compensation of qubit decoherence via
machine learning, Nature communications, Vol. 8, 2017.

[38] R Iten, T Metger, H Wilming, L Del Rio, R Renner Discovering physical concepts with neural
networks, Physical Review Letters, 2020.

[39] William J. Huggins, et al. “Efficient and noise resilient measurements for quantum chemistry on
near-term quantum computers.” arXiv:1907.13117 (2019).

[40] Guillaume Verdon et al., Learning to learn with quantum neural networks via classical neural
networks, arXiv:1907.05415, 2019

[41] Kishor Bharti et. al., Noisy intermediate-scale quantum (NISQ) algorithms, arxiv:2101.08448,
2021.

[42] Lloyd, S., Mohseni, M. & Rebentrost, P., Quantum principal component analysis, Nature
Physics 10, 2014.

[43] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd, Quantum Support Vector Machine for Big

Data Classification, Phys. Rev. Lett. 113, 2014.

[44] Seth Lloyd, Masoud Mohseni, Patrick Rebentrost, Quantum algorithms for supervised and
unsupervised machine learning, arxiv:1307.0411, 2013.

[45] Nathan Wiebe, Leonard Wossnig, Generative training of quantum Boltzmann machines with
hidden units, arxiv: 1905.09902, 2019.

[46] András Gilyén, Srinivasan Arunachalam, Nathan Wiebe, Optimizing quantum optimization
algorithms via faster quantum gradient computation, SODA '19: Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, January 2019.

[47] Nathan Wiebe, Daniel Braun, and Seth Lloyd, Quantum Algorithm for Data Fitting, Phys. Rev.

Lett. 109, 2012

[48] Vedran Dunjko, Jacob M. Taylor and Hans J. Briegel, Quantum-enhanced machine learning,

Phys. Rev. Lett. 117, 2016

[49] Nathan Wiebe, Key questions for the quantum machine learner to ask themselves, New J.
Phys. 22, 091001, 2020

	Why should we care?
	How can quantum mechanics help in doing machine learning?
	Can we rethink existing machine learning algorithms?
	How can machine learning help in doing Physics?
	1.2 What are near-term devices?
	The past
	The present
	The future

	1.3 Quantum learning
	Complexity classes
	Classical computational learning
	Quantum computational learning

	1.4 Categories within quantum machine learning
	ML-assisted Quantum Physics
	Quantum-enhanced machine learning

	1.5 References and Further Reading
	QML reviews and basics
	NISQ devices
	Quantum learning
	Categories in QML
	[43] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd, Quantum Support Vector Machine for Big Data Classification, Phys. Rev. Lett. 113, 2014.
	[47] Nathan Wiebe, Daniel Braun, and Seth Lloyd, Quantum Algorithm for Data Fitting, Phys. Rev. Lett. 109, 2012
	[48] Vedran Dunjko, Jacob M. Taylor and Hans J. Briegel, Quantum-enhanced machine learning, Phys. Rev. Lett. 117, 2016

