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Quantum machine learning (QML) is a rapidly emerging field of immense industrial and scientific 
interest. It beautifully merges the ideas and applications of machine learning with the enigmatic 
principles of quantum physics. The meaning of learning can be thoroughly redefined due to concepts 
like interference, entanglement and superposition. Many classical algorithms have already shown 
promising speed-ups in data and time complexity when quantum systems are harnessed. However, 
this new field is riddled with unanswered questions and considerable implementation challenges. In 
these notes, you will: 

● get acquainted with the basic terminology and definitions  

● have a look at the past, present and future of quantum hardware 

● learn about the meaning of learning in the context of quantum machines  

● explore the various subcategories of research directions in QML 

● look at basics of quantum variational learning 
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1.1 Why quantum machine learning? 

Let us imagine that one day David Deutsch (the father of quantum computing) drops by the Vector 

institute of artificial intelligence in Toronto. He runs into Geoffrey Hinton (the father of deep learning) 

and falls into a passionate discussion about quantum machine learning over coffee. Geoffrey asks 

David about why this field is attracting so much interest. Let us try to think along Geoffrey’s line of 

curiosity and list some follow-up questions. Some overarching questions are discussed as subsections 

below. 

 

                 

Figure 1.1 – Geoffrey and David spark our curiosity about QML. 

 

Why should we care?  
 
Machine learning has grown rapidly in recent years due to an increase in computational power, data 
availability and targeted algorithms and applications development. It will continue to play a huge role 
in shaping technology and human life. With the increasing amount of data and saturation of Moore’s 
law, however, improvement and speedups in classical algorithms and computation power will start to 
saturate. It is important to explore how quantum physics can interact with this growing field, especially 
as physicists diligently keep working towards realizing a universal quantum computer. Many quantum 
algorithms have already been developed that show exponentially better performance for various 
problems. Quantum machine learning can have a huge impact on how machine learning evolves over 
the next decade. It can offer a different model of learning and computation. This does not necessarily 
imply exponential speedups for all machine learning problems, however. 

 
Moreover, with growing amounts of data, its storage and analysis for classical algorithms will start to 
consume staggering amounts of energy and resources. It might be cheaper and environmentally more 
friendly to use quantum memories and quantum routines for certain tasks in the long run. Quantum 
processors will most likely be used as accelerators with classical computers; just as graphical 
processing units are used today. This is because classical computers are very cheap and efficient at 
executing most basic computation tasks. Conditions under which using quantum processors can pay 
off are under research. Quantum machine learning does not require universal general-purpose 
quantum computers. Physical hardware that can implement quantum learning algorithms is much 



closer than we think, as we will see in section 1.2. Hence, it is important to explore what we can do 
with these emerging quantum technologies.  
 
 

How can quantum mechanics help in doing machine learning? 
 
Quantum mechanics offers many “unintuitive” phenomena that are classically unparalleled. Let us 
try to think of some of the ways in which these principles could potentially affect the capabilities of a 
learning machine. 

 

● Quantum computing provides a fundamentally different platform for computation. Are 
quantum learning models computationally more powerful? Can entanglement and 
interference give a quantum learner access to concept classes that a classical computer 
cannot? Can quantum complexity and superposition lead to the process of learning a concept 
with smaller data or query sizes? We will explore quantum learning theory in section 1.3. 

● Some quantum algorithms, like Grover’s algorithm for unstructured search, are known to 

be more powerful than their classical analogues. Would this also apply to quantum machine 
learning models? Can parallelization and superposition result in smaller computation time, 
steps and resource requirements?  

● The phenomenon of entanglement is only evident in quantum states and cannot appear in 
the classical world.  Can exploiting this phenomenon help learn different or non-trivial 
correlations in our data? Can this lead to finding patterns that cannot be replicated on a 
classical computer? 

● Any physical implementation of a quantum computer will have innate noise and realization of 
comprehensive fault-tolerance capabilities are still decades away. Can we use this innate noise 
in quantum systems in training quantum machine learning models to get better generalization 
capabilities just as noise is used in classical machine learning to make models more robust and 
generalizable? 

● Neural networks provided with enough depth and data become universal function learners, 
i.e. they can learn any function incumbent in the input data. What quantum models act as 
universal learners?  

● Optimization techniques are central to machine learning. What does optimization look like for 
a quantum device? Can quantum systems work around the requirement of convexity that 
plagues many classical machine learning methods? 

● A crucial question that researchers continue to struggle with is explaining how classical 
learning models exactly work; explainable models. For example, the theoretical understanding 
of how neural networks really function and depend on depth and parametrization is still 
limited. If we use quantum learners dictated by the laws of quantum physics, can these 
provide explainable learning models?  

● One of the leading arguments for the origins of quantum computing was that classical 
computers are unable to simulate quantum systems. If used for this purpose, can emerging 
quantum devices help solve existing problems in Physics and help reveal new fundamental 
laws of nature?  

 
 
 

 

Can we rethink existing machine learning algorithms? 
 



Previously, we saw how new algorithms can be developed when using the physical laws of quantum 
mechanics. Rather than creating new quantum machine learning algorithms, let us now try to think if 
we can change only parts of existing classical machine learning algorithms to quantum ones. 
  

● Machine learning and deep learning use linear algebra routines to manipulate and analyse 
data to learn from it. Can we harness speed ups using the powerful tools of quantum systems 
with their innate support for linear algebra? 

● Quantum states are complex probability distributions and quantum measurements represent 
sampling from these distributions. Can this naturally help in probabilistic machine learning 
models where sampling from probability distributions is generally expensive?  

● Distances or similarity between quantum states can be easily assessed in their Hilbert spaces 
using inner product. Can this help in machine learning algorithms where computationally 
expensive tricks and kernels have to be used to do this?  

● Representing classical data as quantum states automatically performs a feature map from the 
original data space to a high-dimensional Hilbert space.  How can we exploit this? What 
nonlinearities can be used in embedding classical data to quantum states? How do we cluster 
or classify in these large Hilbert spaces with quantum states? Can this replace classically hard 
or expensive kernels?  

● Topological analysis of large sets of classical data gets increasingly expensive for classical 
machines. How can we exploit complex topological spaces in quantum mechanics to analyse 
data? 

 
 

How can machine learning help in doing Physics? 
 
The applications of classical machine learning algorithms are far-reaching, from genetics, drug 
discovery and finance to online shopping and social policy. What about Physics? Can we exploit 
decades of advances in classical algorithms to further Physics research? Can we use data-driven 
learning techniques to understand complex and elusive problems in physics that cannot be solved 
analytically or simulated with the current classical computers? For example, exotic phases of matter, 
particle physics or complex field theories. Recently, more and more physicists have started to think 
along these lines, as we will see in more detail in section 1.4.   
 
These are just some of the questions that QML scientists are working on to assess what QML can offer. 
Do any of these questions raise your curiosity? 
 

1.2 What are near-term devices? 

 

Excited to learn about what quantum machine learning research might entail, Geoffrey asks David if 

implementing these ideas will only become possible with the advent of quantum computers. David 

explains that this is a popular misconception and that scientists have made great progress in the 

technological advancement of quantum devices in the recent years.  



                 
Figure 1.2 – David and Geoffrey talk about the NISQ era. 

The past 
 
The principles of quantum mechanics were formalized over the early twentieth century and were 
mind-boggling enough to bother even Albert Einstein. As physicists continued to try to understand 
quantum systems, analytic solutions became harder to achieve. The need to simulate these systems 
became evident. With access to classical computers, limited cases could be simulated. However, the 
resources required by classical computers for simulating quantum systems grow exponentially with 
the size of the quantum system. Moreover, the dynamics and correlations in large many-body and 
highly entangled systems remained elusive. A theoretical and experimental effort was globally started 
after Yuri Manin and Richard Feynman proposed the idea of analogue quantum simulation in the 
80s. This entails using a known and controllable quantum system to model the dynamics of an 
unknown one. For example, if a set of atoms can be trapped and their interactions tuned using external 
electromagnetic fields, we can use them to study different forms of matter.  
 
This led to the birth of quantum computation; a subfield of Physics that encompasses all problems 
where a quantum state is manipulated. Let us quickly recall that the fundamental unit of quantum 
computation is the qubit - the analog of the classical binary bit. From quantum mechanics principles, 
we know that a qubit state can represent a superposition over bit 0 and bit 1; it represents a 
probability distribution over the two states. For example, consider a simple quantum system with just 
two energy levels - this is understandably called Two-Level System (TLS) - where the ground state 
can be labelled as state |0> and the excited state as state |1>. The system can be in any arbitrary α|0> 
+ β|1> state, where α, β are complex numbers and must preserve the state unit-norm condition. This 
very strange generalization of probability leads to another unique feature in quantum computation: 
interference of probabilities that can be added and subtracted! 
 
A major boost to this field came during the 90s when various new quantum algorithms that could 
perform better than their classical counterparts were proposed. One of the most impactful examples 
is the Shor’s algorithm that factors integers exponentially faster than any known classical 
algorithm. This attracted a lot of attention - and investment - as the current online security protocols 
depend on a classical computer’s inability to factor large integers in a reasonable amount of time. On 
the other hand, tremendous technological advances - for example in microscopy, spectroscopy, 
fabrication and nanotechnology - enabled scientists to isolate and manipulate the first small physical 
quantum systems through the 2000s and 2010s. Let us not forget that this is a fundamentally 
challenging problem to solve. It is not easy to perfectly isolate a qubit (remove all interactions between 
a qubit and its environment) and also apply unitary manipulations to control it. Even a single stray 
photon can lead to the wavefunction collapse by doing an “unintended” measurement. 



 
The basic requirements for realizing a quantum computer were succinctly summarized by Physicist 
David P. DiVincenzo in 2000. They are now called the DiVincenzo criteria: 
 

• The most basic one is the ability to identify a physical quantum system where a qubit can be 
used to encode quantum information.  

 

• To implement any real computation, thousands of controllable qubits can be needed. So, the 
choice of the physical system should allow for scalability to a large network. 

 

• Workable characteristic time scales are essential. Let us recall the definitions of these time 
scales and consider the Two-Level System (TLS) again. Assuming the system is in the ground 
state, an external electric field can “drive” the system into its excited state. The system decays 
back to the ground state after a certain time – called longitudinal relaxation time. This can be 
due to spontaneous emission (vacuum fluctuations) or stimulated emission (keeping the 
external field on). This puts the ultimate time limit on state measurement or readout as after 
this time both the state and coherence information are lost. The other important timescale is 
the transverse coherence time; the time it takes for the system to lose its phase or coherence 
information to the environment due to dephasing processes. These could include interactions 
with stray fields, lattice phonons, spin baths, random charges, strain or thermal fluctuations 
in the system’s environment and so on. This puts a time limit on quantum operations or 
manipulations that rely on coherent properties of the system.  

 

• The ability to initialize the system in a desired quantum state helps us start any computation 
with a known state.  

 

• The ability to implement any unitary transformation (universal set of gates) and measure 
specific qubits are also essential for a universal quantum computer.  

 
In principle, any physical quantum system that supports mutually orthogonal states of a physical 
property can be used. Some examples that are being explored so far include vacancy centers in 
diamond, superconducting circuits, trapped ions, semiconductor quantum dots, photons, topological 
qubits in nanowires and rare-earth ions trapped in crystals. Let us look briefly at some of these 
candidates: 
 

● Vacancy centres in diamond: These are lattice defect sites in diamond where “vacancy” refers 
to missing Carbon atoms and “centers” refer to atomic impurities surrounding the vacancy 
like Nitrogen, Silicon or Germanium. Many of these defects result in electronic states in 
diamond’s band gap that can be used to form qubits. Experimental techniques like 
fluorescence confocal microscopy can be used to detect and manipulate single defects in the 
lattice. Diamond provides a scalable architecture, in principle, and can be easily integrated 
into current silicon-based technology. A major drawback for this system is decoherence and 
dissimilarity between multiple qubits due to localized noise (lattice phonons, coupling to 
neighbouring nuclei spins and local impurities). 

 
● Superconducting circuits: LC circuits with a capacitor and an inductor make a harmonic 

oscillator where energy oscillates between capacitive and inductive forms. This holds even on 
microscopic levels where the oscillator energy becomes quantized. As all energy levels in this 
quantum harmonic oscillator are equally spaced, non-linear inductors (Josephson junction) 
are used to get anharmonic oscillator. The lowest two energy levels are then used to encode 
qubit states. This usually lies in the microwave frequency regime. To reduce noise and 



dissipation, temperatures are reduced to nearly absolute zero and superconducting elements 
are used. This architecture allows for scalability but suffers from crosstalk and noise in readout 
electronics with increasing number of qubits. Moreover, using cryogenics makes this system 
very expensive and non-portable. 

 
● Trapped-ions qubits: Electromagnetically confining potentials are used to trap a group of 

certain stable ions. These systems come close to the ideal TLS. Moreover, individual ions of 
the same element are identical (no local irregularities like in solid-state qubits or fabricated 
superconducting qubits) and can be manipulated using lasers. These qubits provide long 
coherence times compared to many other qubit systems. Stray fields and trap 
inhomogeneities lead to decoherence. Scalability is possible but gets limited by trap sizes 
presently. It will be challenging to make traps large enough for thousands of ions (or millions 
- as we will see later).  

 
Note that adiabatic quantum computing is a different computation model with annealing-based 
optimization instead of gate application and measurements. A quantum system prepared in the 
ground state of a simple, known Hamiltonian can be weakly perturbed and slowly driven to the ground 
state of the problem Hamiltonian. In 2011, this method produced one of the first commercially 
available quantum computers by the Canadian company D-Wave Systems. Here, however, we will only 
focus on gate-based quantum computing.  
 
 

The present 
 
With relentless hard work by academic groups over the last thirty years, the first small networks of 
qubit systems have started to materialize recently. There is now a growing interest and investment 
from the commercial sector as well. Aware of the impact quantum technology can have on 
information and communication technology in the near future, many big technology companies like 
Google, Microsoft, Intel and IBM have started their own research groups and developed deep 
collaborations with academic research groups in the last ten years. A large number of start-ups in the 
field have also recently sprung up and are raising huge investments.  
 
This rapid progress has resulted in a wonderful new development: the number of qubits has grown 
from less than 10 qubits and a few gates in isolated academic labs to 50 qubits and up to hundred 
gates in commercial labs. IBM, Rigetti and Google are leading this effort with superconducting qubits. 
Xanadu uses large coherent cluster states of light to encode qubits and offers room-temperature, 
continuous-variable quantum computing. IonQ offers trapped-ion quantum computing. Microsoft is 
working on topological quantum computing.  
 
Many companies are now providing cloud access to their hardware due to its bulky and non-portable 
nature. For example, in the case of superconducting qubits, fabricated chips with nanoscale circuits 
have to be kept in huge dilution fridges at cryogenic temperatures. These fridges are very costly and 
cannot be easily setup by anyone anywhere. They require complete mechanical, thermal and electrical 
insulation support and also depend on the limited Helium-3 and Helium-4 reserves of our planet. 
Hence, despite the time overhead in communicating over a cloud connection, cloud access makes 
current devices more accessible, efficient and cheaper to use. Moreover, many companies (especially 
new start-ups) are offering only quantum algorithms and/or quantum software services instead of 
building up their own physical quantum computers. They can pay the bigger companies for the cloud 
access and instead focus on solving new problems with the available devices. For example, Q-CTRL is 
an Australian company that helps other quantum computing companies improve the quality of their 
qubits by working on hardware error characterization.  Another interesting example is the American 



start-up QC Ware that plans to provide a unified cloud platform to connect to the various hardware 
providers. 

 

 

 

Figure 1.3 – Quantum computers are speculated to solve problems that can be really hard for classical ones. 

This figure is taken from John Preskill’s 2012 paper that introduced the term “quantum supremacy” [5]. 

                                                
With 50 qubits, we start to enter a regime where classical computers cannot catch up anymore. Hence, 
we are currently entering what is called Noisy, Intermediate-scale Quantum (NISQ) era, as the 
Physicist John Preskill has aptly termed. We have noisy qubits without any error-correction and the 
quantum system is large enough to not be considered classically “easy”. This opens up a whole new 
frontier of unexplored opportunities! First things first, we can finally start to get the first experimental 
evidence regarding quantum supremacy; the idea that quantum computers can perform decisively 
better than the best classical computer for a certain task, see Figure 1.3. To be more precise, by the 
term decisive here, we mean polynomial or super-polynomial (any function whose growth is 
larger than a polynomially growing function), as we will see in more detail later. This has been 
theoretically speculated as one of the distinguishing features between quantum and classical 
computers for a long time. Tasks like simulating quantum systems, factoring and Fourier transforms 
theoretically benefit from super-polynomial speedups. Aram Harrow and Ashley Montanaro put this 
very nicely in [10] as: 
 

“Supremacy experiments can be thought of as the computational analogue of Bell 
experiments. Just as Bell experiments refute Local Hidden Variable models, 
supremacy experiments refute the old Extended Church-Turing (ECT) 

thesis, which asserts that classical computers can simulate any physical process 
with polynomial overhead”.  

 
Hence, this is not only important to justify the huge investments into building fault-tolerant quantum 
computers, but it is also an important check to see that we understand quantum computational theory 
correctly. If it turns out that we cannot find any task for which quantum supremacy can be proved, 
we might have to reformulate quantum mechanical theory.  
 
The physical verification for these claims, however, has been out of reach so far. An encouraging factor 
is that many computational problems do not depend on the existence of a universal quantum 
computer. One such example is boson sampling. To understand this concept, we can use the Galton 
board - commonly used in statistics demonstrations. Let us assume bosons (for example photons) are 
balls incident on a Galton board with multiple input funnels - as shown in Figure 1.4. The number of 



collection buckets are assumed to be larger than the number of input funnels/photons. The pegs 
represent a linear interferometer. Let us say we run our Galton board experiment and record the 
output pattern in the buckets – for example the output pattern shown in Figure 1.4 is [0, 0, 2, 0, 1, 0, 
0,1, 2, 0, 0, 0, 0, 0, 1, 1]. If we run this experiment enough times (maybe millions of times), we can 
collect the full information about the probability distribution of all possible output patterns. In other 
words, an output we get from a new run is essentially sampling from this probability distribution. Now, 
let us say that I give you a certain output pattern and ask you how probable it is that we observe that 
particular pattern in a new run. It turns out that this is a very hard question to solve for a classical 
computer and it gets harder as this Galton board becomes larger. In practice, it is not easy to 
implement boson sampling due to imperfect single-photon sources and photon-counting detectors. A 
way around using single, indistinguishable photons is using gaussian states of light (like coherent 
states) - as is done in gaussian boson sampling.  
 

 

 

Figure 1.4 – Boson Sampling can be understood using a Galton board with multiple funnels. The crosses 

represent pegs that scatter the incident balls into various collection buckets.  

 
As we saw before, controlling quantum systems and introducing qubit-qubit interactions while 
keeping them isolated is very challenging. It will be very encouraging to show that we can execute 
quantum circuits for a desired computation with reliably low noise. Due to its importance, there is 
currently a great effort led by early hardware providers to prove quantum supremacy for any task, 
irrespective of how useful that task is. However, these efforts will also help in answering the question 
John Preskill asked at that 25th Solvay Conference on Physics in 2012: 

 

“Is controlling large-scale quantum systems merely really, really hard, or is it 
ridiculously hard?”. 

 
Any quantum supremacy experiment requires: 
 

• a clear task 

• a corresponding quantum algorithm 

• a way to compare it to a classical algorithm (for verification of supremacy) 

• verifying results and running the algorithm in the asymptotic limit (for large system sizes). This 
might require huge time and memory resources (supercomputers, GPUs, aggregate RAMs). 
This is because a general n-qubit state requires O(2n) space. Consequently, it is not easy to 
verify the results of such an experiment - if it is giving the correct results and really is classically 
hard.  



 
Note that factoring is an exceptional example. If I give you a machine claiming that it is a quantum 
computer that can implement Shor’s algorithm, you can easily verify this. If you run the integer X 
through the machine and it outputs the factors (a, b), we can quickly check that X = a* b on our laptops. 
This is because factoring belongs to the NP (Non-deterministic Polynomial) complexity class; 
given an efficient method to implement the problems in this class, their solution can be checked in 
polynomial time. Other tasks that we can use in quantum supremacy research are not this lucky. Many 
tasks were proven to be less classically challenging than originally proposed. Researchers from Physics 
and computer science backgrounds are, hence, currently working on defining well-suited tasks, 
developing efficient verification methods and identifying the exact quantum/classical boundary - 
especially for near-term devices. Examples of some verification methods include testing on smaller 
systems or using statistics. Moreover, techniques like approximate simulation, dynamic programming, 
Feynman paths (two-qubit gates are decomposed into single-qubit gates and circuit partitioned), 
rejection sampling and Tensor network contractions can be used to implement bigger classical 
simulations. These rapid developments are expected to bring about more results in quantum 
supremacy research in the near future. 

 

The future 
 
The first positive experimental claim to quantum supremacy was reported in 2019 by Google, although 
its validity was questioned by IBM and others, see [13], [14] in the references. Just as sampling from 
the output distribution in boson sampling is classically hard, sampling from the output distribution of 
a random quantum circuit is also hard for large circuits. A random circuit consists of application of 
gates randomly drawn from the universal gate set (for example, any two-qubit entangling gate with 
arbitrary single-qubit gates is exactly universal). This is the task that was implemented on a 53 
superconducting-qubit state-of-the-art processor at Google. Great progress was shown in reducing 
errors in applying one and two-qubit gates. They applied roughly 1000 single-qubit and 400 two-qubit 
gates in each run, measured all qubits and stored the output pattern. For verification, smaller parts of 
the same circuit were simulated on classical supercomputers and extrapolated. Many of the tricks 
mentioned in the last section were employed to enhance classical computer’s simulation and memory 
capabilities. They claimed that their processor took only 200 seconds to run and sample a random 
quantum circuit a million times and that the same task would take 10,000 years on the finest classical 
supercomputer! The second supremacy result was reported in December 2020. Researchers and 
collaborators at University of Science and Technology of China used Gaussian Boson sampling to 
demonstrate quantum supremacy. 50 indistinguishable gaussian packets of light (squeezed states) 
with a 100-mode interferometer were used to show that the sampling tasks that their quantum setup 
could do in seconds would take millions of years on the best classical computer.  
 
So, what now? Where do we go from here? It is expected that the current NISQ devices will start to 
double in size and power every few years. What can we do with these devices? These are questions 
that are already starting to attract a lot of attention. With access to actual hardware of up to a hundred 
qubits and few hundred gates, both young and seasoned researchers have started to play around with 
these systems. Most likely, the quality and size of these devices is too low to implement the promising 
applications of drug and material design. However, important insights can be gained about the kind 
of noise present in the current hardware and how it affects any quantum computation. Hence, we can 
use NISQ devices to help us in engineering better devices, improving circuit architectures and in 
optimizing error-correction schemes as these devices scale. Another important thing to note is that 
the field of quantum computation started with analogue quantum simulation, but these general-
purpose devices can essentially be used to implement any computation or simulate the dynamics of 

any quantum system, digital quantum simulation. Noise-resilient applications are being 



actively researched. The most relevant one for us is quantum machine learning. In the long term, it is 

pertinent that the quality of gates and qubits becomes much better and quantum random 
access memories are developed. 
 
Why do we have to work with noisy devices? Why don’t we correct for errors already? This is because 

error identification and error correction are not trivial for quantum states. Due to the no-cloning 
theorem, quantum states cannot be perfectly copied. Additionally, errors cannot be identified 
without “looking” at the state, which in itself is destructive. Hence, simply using data redundancy like 
we do in classical computers is not possible. Error-correction protocols that use clever redundancy 
techniques for both bit and phase errors have been proposed over the last couple of decades. In order 
to implement fault-tolerance and error-correction, however, we might need millions of quality 
physical qubits. 

 

1.3 Quantum learning 

Quantum machine learning is an application of quantum computing. But what do we exactly mean 

by learning? What is a learning model and what does it learn? Let us dive a bit deeper into this.  

 

 

Complexity classes 
 
In the last section, we came across the term NP complexity class. Complexity is a way of studying how 
different computational problems consume resources (time or memory). The harder it is to solve a 
problem, the more resources it uses. Problems can be categorized into types. Some examples include: 
 

● Decision problems are basically yes/no questions that output a single bit; “is x a prime 
number”. These are most commonly used in deriving complexity theoretic arguments. 
 

● Function problems are similar to decision problems, but the output can be a more complex 
object; “what is the binary representation of a decimal number x” 

 
● Search problems are similar to function problems but there might be more than one correct 

answer; “find object y in object x”  
 

● Counting problems are related to questions based on counting the number of answers; “how 
many cycles are present in graph G” 

 
● Optimization problems are concerned with finding the best answer to a question; “what is the 

best way to divide a graph G into two smaller graphs” 
 
The other ingredient is the type of computational model that is being used to solve the problem. This 
is the abstract representation of a physical computing device and its underlying working principles. 
Some examples include: 
 

● Deterministic Turing machine 

● Non-deterministic Turing machine 
● Probabilistic Turing machine 



● Quantum Turing machine 
 
Conventionally, asymptotic behaviour with respect to input size is used to compare various algorithms 
by using the Big O notation. For example, an algorithm that uses a constant amount of resources 
no matter the size of input, is said to scale as O(1). Figure 1.5 shows some of the popularly used 
functions. 

 

 

Figure 1.5 – Functions commonly used to derive upper bounds when using the Big O notation.  

 
The complexity of quantum algorithms can similarly be quantized using the number of 
operations/gates used. To facilitate comparison, a universal gate set can be chosen. It does not matter 
which set you choose as you can convert one set to the other using a constant amount of resources 
anyway. All gates can then be decomposed in terms of these “elementary” gates and counted. An 
algorithm is considered efficient if its running time, let us call it T, is a polynomial function of input 
size N, i.e. T(N) = f(Np), where f is some polynomial function and p is a constant that represents the 
degree of the polynomial function. Defining complexity classes is a way to group similar problems that 
might require similar amounts of resources. In Table 1, we describe some of the popular classical and 
quantum complexity classes. The classes we mostly work with are P and BQP as they contain the 
efficient algorithms. Space complexity can also be considered but we will not go into its details here. 
 

 

Class Classical/Quantum Brief Description 

 

P Classical Can be solved by a deterministic Turing machine in 

polynomial time 

EQP Quantum Can be solved by a Quantum Turing machine in 

polynomial time with probability 1 

 

 

BPP Classical  Can be solved by a probabilistic Turing machine in 

polynomial time with probability at least 2/3 

BQP Quantum  Can be solved by a quantum Turing machine in 

polynomial time with probability at least 2/3 

 



 

NP Classical  Solution can be checked by a deterministic Turing 

machine in polynomial time 

MA Classical  Solution can be checked by a probabilistic Turing 

machine in polynomial time with probability at least 2/3 

QMA Quantum  Solution can be checked by a quantum Turing machine 

in polynomial time with probability at least 2/3 

 

 

EXP Classical  Can be solved by a deterministic Turing machine in 

exponential time 

Table 1.1 – Some popularly used classical and quantum time complexity classes. Note that P  BPP  BQP  

QMA  EXP, where A  B means that A is a subset of B.  

 

Classical computational learning 
 
Let us consider the following scenario: David is trying to figure out a certain function f that Geoffrey 
already knows. One way to learn how it looks is to guess it by looking at function values for various 
inputs x (for example, x1, x2, x3, …). As shown in Figure 1.6, Geoffrey can mark the output of the 
function, f(x), for different values of x that David shouts out. After many such back-and-forth rounds 
between them, David can start to see how the function f looks like. How many questions would David 
have to ask in order to guess the correct f? How much time and memory would it take? What functions 
can he learn? What are his limitations? These are the questions that underlie learning theory. This 
particular method of learning by “querying” a function oracle is called exact learning, where in our 
example Geoffrey is the function oracle. 

 

  

Figure 1.6 – David tries to learn how function f looks like by looking at its output value for different x. For 

every value of x that David shouts out, Geoffrey - the function oracle - can plot the function output. 

If function f belongs to a certain known class of functions, then we are essentially querying this class 

to figure out which member of this class is the target function. These queries are fittingly termed 

membership queries. For example, classes of Boolean functions that map n-bit strings to 1-bit 

strings (called concept classes) are frequently used in learning theory. A first safe guess is that to get 



the complete picture of a concept that acts on n-bit inputs, we should query it on all 2n possible n-bit 

strings. Can we do any better? Analogous to time complexity that we saw earlier, the study of the 

required number of queries is termed query complexity. A concept is called efficiently learnable if 

it can be learned in a polynomial number of queries (the number of queries grows polynomially with 

the system size). Examples of concept classes that are polynomial membership-query learnable 

include some restricted classes of DNF (or CNF) formulas. DNF (CNF) stands for Disjunctive 

(Conjunctive) normal forms, respectively. This is just a way of writing Boolean functions using only 

additions and multiplications on grouped Boolean variables. For example, (𝑏1 ∧ 𝑏2) ∨ (𝑏3 ∧ 𝑏4) ∨

(𝑏5 ∧ 𝑏6) is a DNF formula, where 𝑏1 to 𝑏6 are Boolean variables. This is an example of a 2-DNF 

Boolean expression; when we say k-DNF, it means that each grouped term contains k Boolean 

variables. General learnability of DNF and CNF classes remains an open question and is widely studied 

as any Boolean function can be expressed in this form. Examples of exact-learnable DNF subclasses 

include class of log n-DNF ∩ log n-CNF and monotone DNF (DNF expressions that can not contain any 

Boolean variable with negation) Boolean formulas. Other examples include monotone decision lists 

(list of pairs of Boolean functions). Note that, in general, a concept that is polynomial-query learnable 

is not necessarily polynomial-time learnable.  

The technical term for the function we are trying to learn is target concept and it is usually labeled by 
the letter c. In reality, we do not always have access to an expert oracle like Geoffrey who knows the 
target concept c and can help us learn it over an instance space 𝝌 (space of input data). The idea of 
machines learning concepts from data with a deduction procedure was generalized by Leslie Valiant 
in 1984. He introduced the Probably Approximately Correct (PAC) learning method. Assuming 
a concept class like before, we are given data points according to an unknown distribution D and 
access to an oracle that can tell us their output labels (0 or 1). Let us call these PAC samples (x, c(x)). 
In literature, these are technically called examples and the oracle is called a random example oracle 
but let us not use these terms here to avoid any confusion. Next, a hypothesis set of functions 𝑯 is 
chosen. This is a set of guess functions and can be finite or infinite. For example, a neural network 
with infinitely different parameter settings represents infinitely many guess functions. For now, we 
will assume it is finite. For h ∈ 𝑯, the learner compares h(x) to the given label c(x) for various instances 
x ∈ 𝝌. Note that we assume that all PAC samples are independent and identically distributed (i.i.d). 
This is crucial for both learning and generalization: 
 

• we will be learning over a “representative” set of points 
 

• the learned function will only generalize to unseen datapoints (the whole instance space, in 
principle) if we assume that both seen and unseen data have the same distribution, albeit 
unknown. 

 
How many data points should we check a hypothesis on? As the name of the learning method 
suggests, the learned hypothesis (usually called g) should approximate the target function up to some 
tolerated error (of our choice) with high probability. The probability that any hypothesis h and c differ 
by more than our tolerance is upper bounded by Hoeffding’s inequality, which basically says that 
if we want to set a small tolerance for error, we have to use more PAC samples during the learning 
procedure. Moreover, the complexity of the hypothesis set (number of hypotheses in 𝑯) also effects 
learning; the more hypotheses you have to check, the more errors you can accumulate. This 
complexity is characterized by the Vapnik-Chervonenkis (VC) dimension. This is the largest 
number of datapoints for which 𝑯 can find all possible dichotomies (all possible ways of dividing the 
set of inputs based on their labels). Hence, this parameter directly reflects the complexity of the 
concept class; if the data looks very irregularly distributed, VC dimension will be higher, and we will 
need more samples to get to know the target function.  



 
Why not use an infinite 𝑯 every time?  Other than the cost factor, we also do not want to overfit the 
data. As we will always be using a finite subset of data from the instance space to make our guess of 
the target function, there is no guarantee that any new datapoints will behave the same way as our 
“training” subset. Hence, the learned hypothesis g can “generalize” with high probability by using the 
right number of PAC samples and the right size of 𝑯 (using polynomial number of unique dichotomies 
or a finite VC dimension). The number of PAC samples required to ensure a certain accuracy and 
confidence over all target concepts and distributions is termed sample complexity. We can guess 

now that sample complexity 𝑺 ∝
𝒅𝜹

𝝐
, where 𝒅 is VC dimension, 𝝐 is the error tolerance and 𝜹 is the 

confidence. A polynomial sample complexity implies PAC-learnability. This holds for any learning 
algorithm, target concept, input data distribution and error tolerance. Note that we may actually 
never know the target concept as 𝝌 can be infinite and it is also possible that c ∉ 𝑯.  
 
PAC learning lays the foundation for classical machine learning, specifically supervised machine 
learning. However, the latter lacks unlimited access to the instance space and sample oracle. 
Moreover, PAC model gives the worst-case sample complexities over all concepts and distributions on 
the instance space. In practice, we are only given a fixed number of noisy labelled samples drawn from 
some unknown joint probability distribution Dx,y without any notion of a target concept, where y is 
commonly used to represent the output/label. Hence, depending on the application, we choose a 
learning model (hypothesis set + learning algorithm) and use risk minimization on custom error 
functions (instead of using probability of making errors on drawn examples) such that we get a small 
training and generalization error for the given data. This approach falls along the lines of statistical 
learning theory. Many other learning models like agnostic model, statistical query model and others 
based on algorithmic learning theory and Bayesian inference have also been theorized. 
 
 

Quantum computational learning  
 
The development of the corresponding quantum learning theory is still an active area of research. A 
popular conception is that QML will be able to provide speed-ups in machine learning by reducing 
time, sample or query complexity for various learning algorithms. The theoretical and empirical 
evidence for this claim, however, is still lacking. The first obvious thing we can say is that any concept 
class that is quantum efficiently learnable must also be classically efficiently learnable. This should 
hold for any learning model; exact, PAC or any other. Recall that in these models, learnability is defined 
in terms of polynomial number of queries/samples. Time complexity is a different factor to consider, 
and we will come to this point in more detail later. 

 
Let us first look at the quantum exact learning scenario. Again, we can assume a quantum oracle that 
knows all target class functions, can answer membership queries if we give it an input and helps us 
exactly learn the target function with high probability. The inputs are quantum states |𝑥⟩. If we use 
concept classes like before, 2n n-bit input strings become 2n computational n-qubit basis states; 
|00 … 0⟩, |00 … 1⟩ to |11 … 1⟩. We can read off the function label c(x) when we use quantum input 
states by using an ancilla qubit (with a known bit value) as shown in Figure 1.7. 

 



 

Figure 1.7 – A clever method to get answers from the quantum membership query oracle in the exact 

learning model, where  represents bit-wise addition modulo 2 operation (like a XOR gate). 

 
Now, for a quantum oracle in this setting, given a superposition on the input states, we can get an 
output superposition over all corresponding labels. This might initially suggest that the quantum 
membership-query complexity can be significantly smaller than the classical one because a single 
query to the oracle gets us all the information we need. However, let us not forget that, firstly, upon 
“looking” at the oracle output, we can only “see” one label at a time. Secondly, the query complexity 
also depends on the complexity and size of the target class. If there are a lot of functions to check or 
if it is hard to distinguish between the different member functions in the class, we have to make more 
queries to exactly pinpoint the target one. It was formally proven by Rocco Servedio and Steven 
Gortler in the early 2000s that quantum learning models cannot achieve better than polynomial 
speedup in query complexity for the exact learning setting compared to classical learning models. For 
example, if we convert exact learning problem into an unstructured search problem over a space of 

functions, we can get polynomial speedup using Grover’s search algorithm; we use O(√𝑁) instead of 
O(𝑁) queries, where 𝑁=2n for {0,1}n instance space. Another example is quantum Fourier sampling 
using Bernstein-Vazirani algorithm on a class of linear functions defined on n-bit strings; we use O(1) 
instead of O(𝑁) queries. This generalizes to any class of k-Fourier-sparse n-bit Boolean functions. Note 
that a polynomial speed up might not seem impressive at first but for applications like data science, it 
can potentially reduce data requirements from billions to millions.  
  
We see similar results in the quantum PAC learning model. This was proposed by Nader Bshouty and 
Jeffrey Jackson soon after the Shor algorithm came out in the late 90s. The quantum PAC sample can 
now be in a superposition over all the PAC-samples (x, c(x)) in the instance space with the data 

probability distribution D, i.e. ∑ √𝐷(𝑥)|𝑥, 𝑐(𝑥)⟩𝑥 ∈{0,1}𝑛 . However, keep in mind that it can be costly 

to prepare and measure many copies of input states in superposition from classical data. This is 
sometimes called the “input problem”. It is, however, possible that they are naturally generated from 
some quantum process or experiment, in which case we might benefit more from quantum learning 
algorithms. A hypothesis set consists of measurements on these states. Again, we can set custom error 
tolerance and confidence level for approximately learning the target concept. The sample complexity 
is now in terms of the number of copies of quantum PAC-samples required. It has been shown that 
quantum PAC learning models cannot achieve better than constant speedups in sample complexity 
compared to classical ones.  
 
At first, it might seem that there is no learning problem which can be solved using significantly fewer 
quantum queries or samples than classical ones. In fact, under certain assumptions on distributions, 
quantum sample complexity can be further improved. Moreover, learning is not limited to functions 
in learning theory. Some learning problems are set up to learn the unknown data distribution instead 
of a target concept over the PAC samples (density modelling) and some only want to learn how to 
produce similar looking samples (generative modelling). For example, it was recently shown that 
for generative modelling, the distribution concept class (class of all probability distributions over the 
n-bit Boolean instance space) of discrete probability distributions is quantum PAC-efficient learnable 



but not classical PAC-efficient learnable. Moreover, many areas and applications of Physics require 
learning of a quantum state (quantum state tomography), a Hamiltonian or a quantum channel 
(quantum process tomography). For example, to exactly learn all the amplitudes of a n-qubit quantum 
state, we need O(2n) measurements. This will scale exponentially as the number of qubits grows. In 
2007, Scott Aaronson extended the PAC learning model which approximated the state up to an error 
using O(n) measurements. Here, the hypothesis set was chosen to be a set of two-outcome 
measurements instead of functions and for every measurement (hypothesis), the expectation value 
of the state was checked instead of the label, see [28]. In another recent example, models that want 
to learn to predict the outcome of any physical process (represented by unknown quantum CPTP 
process ℇ) on a given classical data were considered. It was shown that although both classical and 
quantum learning models required similar number of circuit runs and had similar average error in 
prediction, exponential reduction in the number of quantum circuit runs was possible for worst-case 
prediction, see [29]. These are theoretical proposals, however, and require functional quantum 
memories and fault-tolerant quantum computers for their verification. We will look at some practical 
applications of machine learning in Physics in the next section. 
  
What about time-complexity? The time it takes to run an algorithm can also be used to separate 
efficient learnability of classical and quantum learners.  In other words, it is possible that a class has 
polynomial sample complexity, but its learning algorithm is highly time-consuming. Also note that, 
unlike sample complexity, a class that has a polynomial-time quantum learning algorithm does not 
guarantee a polynomial-time classical analogue. These learning problems belong to the BQP 
complexity class. Hence, this might be one of the promising areas where we can hope to find speedups 
in quantum machine learning! Over the last decade, a few such algorithms have already been 
proposed that suggest up to exponential speedups in time complexity. These include QML algorithms 
based on Grover and HHL algorithms for clustering, classification, principal component analysis and 
pattern matching. However, these speedups are only promised under certain conditions, some of 
which are not practically achievable, especially in the near-term. Below we mention a couple of 
theoretical examples from the few known examples of such classes. For example, quantum PAC-
learning the class of k-term DNF Boolean formulas from uniformly distributed data is time-efficient; 
this is not possible classically without membership queries, as we saw in the last section. Another 
example is learning classes that depend on factoring – like classes built on factoring Blum integers or 
classes built on one-way functions popularly used in cryptography - where Shor’ algorithm can provide 
speedups to the quantum PAC learner. For the interested readers, see [23]-[27] and references therein 
for more examples and details of other learning models like quantum agnostic model and quantum 
statistical query model. The latter is especially interesting as it better relates to the current 
implementation of quantum learning algorithms. Many open questions in quantum learning theory 
remain like extending the stated claims to other function classes, the generalization bounds of 
quantum learning models, the role of entanglement in learning, the general learnability of NISQ 
devices and potential advantages in learning when classical data is encoded into quantum states.  

 

1.4 Categories within quantum machine learning  
 
There is no one clear definition of quantum machine learning but we can make our lives much easier 
by defining subcategories in it. Let us try to explain this by continuing with our story. Let us say that 
before leaving, David and Geoffrey decide to stay in touch and collaborate in their research. At the 
Vector institute, Geoffrey works on developing theory and applications of machine learning using 
classical data. On the other hand, David runs a lab where his students study quantum mechanical 
systems to understand the laws of nature. Now, they can collaborate in many ways. One way they can 
collaborate is by exploiting the vast classical machine learning techniques to discover the underlying 
connections in quantum data (data produced in quantum experiments and theory). This line of work 



is generally termed ML-assisted quantum Physics. In another way, Geoffrey can call up David 
and communicate his data to him, who can try if seeing this data through the lens of quantum 
mechanics can help learning form it in any way. This approach to QML research is generally termed 
quantum-enhanced machine learning. However, If David applies machine learning algorithms 
based on quantum mechanical principles to quantum data, this comes under the umbrella of what is 
generally termed fully-quantum QML. Let us look at these in a bit more detail. 

 

ML-assisted Quantum Physics 
 
Over the last decade, data driven learning has found a strong foothold in many areas of science 
including Physics. From decoding data produced at CERN to developing new materials and discovering 
Black holes, the applications of machine learning in Physics are numerous and fast-increasing. We will 
mention only a few examples here from quantum Physics that use various supervised, unsupervised 
and reinforcement machine learning techniques. 
 

• For example, to develop new drugs, we need to know the candidate molecules: from their 
energy levels to their chemical and thermodynamic properties. However, solving the time-
independent Schrodinger equation - that provides us with the energy level diagrams - is 
analytically possible for only a few small molecules. Experimentally verifying the energy scales 
and chemical properties like solubility and toxicity of millions of molecules can be very costly. 
In the last decade, many researchers have employed machine learning models for help in this 
regard. For example, neural networks have been used with huge success to predict 
atomization energies of organic molecules by training them on a subset of molecules with 
known properties. The resulting computational cost and accuracies have been much better 
compared to traditionally used density-functional theory. This has been extended to virtual 
screening for drug development where chemical space is explored to identify new drugs based 
on structural and chemical similarity to known drugs. Graphical neural networks have shown 
a lot of promise here. This can save pharmaceutical companies billions of dollars as the 
chemical space is extremely large and experimental search for new drugs can get very 
expensive.  

 

• Other than quantum chemistry, condensed-matter and many-body Physics has also been 
benefiting from machine learning recently. Many-body quantum systems are systems with 
multiple interacting quantum particles. We come across these systems in many natural 
settings; for example, when studying strongly correlated many-body systems (like 
superconductors and magnets), investigating phases of matter and while designing new 
materials and drugs. Calculating and even simulating the huge wavefunction and its dynamics 
becomes exponentially harder with the system size. Note that this can be a hard task even for 
quantum computers. Exactly simulating the dynamics of a gas of electrons, for example, can 
require impossible amounts of resources on a quantum computer as well. In 2017, two 
ground-breaking results came out where neural networks were successfully used to represent 
many-body wavefunctions, to study their dynamics and to identify their phase transitions, [33-
34]. These are highly non-trivial tasks to solve. The nodes in the input layer of a neural network 
were associated with the many-body system configuration and the weights in the network 
were allowed to be complex numbers. As an example, let us consider an interacting spin 
system spread on a 2D grid (2D Ising model). At low temperatures, the spins will interact to 
align with each other and result in ferromagnetism. If we slowly increase the temperature, we 
disturb the spins and effect the resulting macroscopic magnetism. A transition point occurs at 
some critical temperature, where the system becomes paramagnetic. By training the network 
with data of spin configurations above and below the transition point, neural networks could 
be taught to identify the phase transition. This can play a huge role in assisting physicists when 



it comes to complicated quantum systems for which analytical and/or approximate solutions 
are very hard to obtain. Consequently, these “self-driving laboratories” are becoming 
increasingly popular in materials and Physics research. See the review [35] for more details 
and examples. Note that variational quantum algorithms also offer huge promise for many-
body and quantum chemistry problems mentioned above.  
 

• Machine learning has many uses in quantum computing as well. One important application 
relates to noise. This can take various forms like predicting, correcting and mitigating noise. 
For example, if we take a near-term quantum device and implement a series of gates, its 
results will have noise which is hard to track; we cannot know with certainty which qubit and 
which gates went through what noisy processes, like gate implementation errors or qubit 
dephasing etc. Moreover, the hardware noise (like stray fields, crosstalk, temperature 
gradients, charge fluctuations etc.) can vary across both individual runs and devices. Hence, 
noise models for even a simple circuit can be quite complicated and are hard to formulate 
mathematically. Machine learning models can be used to learn and predict any device-specific 
noise models by first gathering data from many experimental runs and comparing it to 
expected data. The learned noise can then be accounted for in the observed results. These 
techniques can also be extended to implement predicted feedback and correct qubits against 
decoherence in real-time without having to do any measurements, see [37] as an example. 
This can play an essential role in improving and scaling near-term quantum devices in the near 
future. Furthermore, many proposals for using deep learning and reinforcement learning 
techniques to uplift quantum error-correction have come out in the last 4-5 years. Error-
correction protocols for quantum information suggest that a single bit of information is 
encoded into multi-qubit topological states (called surface codes). Measurements are done 
on these qubits (usually on a subsystem) to reveal what errors could have happened. The non-
trivial task of learning the error sequence and then correcting it has been shown to be 
successfully exported to machine learning for various “encodings”. 

 
Other applications include automating both the optimization and design of quantum experimental 
setups (manual quantum control is complicated, often inaccessible and time consuming), state 
tomography (which needs exponentially many measurements otherwise), assisting in designing 
optimal measurement strategies and estimating unknown parameters from measurement results 
(quantum metrology), aiding in classical simulation of quantum systems and discovering new ways of 
expressing Physical laws. See reviews in [30] and [41] for more details.  
 
 

Quantum-enhanced machine learning  
 
The term “quantum-enhanced machine learning” is often used when quantum devices run classical 
data for machine learning. However, simply running classical data through a quantum learning agent 
does not necessarily guarantee any performance improvements as we already saw in the last section.  
Hence, under this field, here we will only look at quantum learning algorithms that offer speedups (in 
computational complexity) to known classical machine learning algorithms. These speedups majorly 
come from representing 𝑵 bits of classical information using 𝐥𝐨𝐠𝟐 𝑵 qubits and from incorporating 
quantum Basic Linear Algebra Subroutines (qBLAS) like Fourier transform, inner products, 
matrix diagonalization, exponentiation and inversion that can be implemented exponentially faster on 
quantum computers. Variants of Grover’s search are also popularly used in this regard. Note that these 
speedups might not be applicable in the near-term as qBLAS generally require a universal fault-
tolerant quantum computer, large number of “perfect” qubits and access to a QRAM. 
 
 



Let us look at some examples: 
 

• Quantum Principal Component Analysis (QPCA): Principal Component Analysis or 
dimensionality reduction is commonly used to preprocess data in classical machine learning. 
Rather than using all given features, only the most significant features are chosen. This process 
involves looking at the correlation between all given features and choosing (or making) ones 
that carry most information about the data and are least correlated with each other. This 
requires computing the eigen values of the covariance matrix of all features which scales as 
O(d2), where d is the dimension of each feature vector.  In 2013, Physicist Seth Lloyd and his 
colleagues proposed a clever algorithm for QPCA where the quantum ensemble 𝝆 that 
represents embedded classical data is used as the covariance matrix. Its eigen-decomposition 
is then done by exponentiating 𝝆 and using this in the quantum phase estimation routine. 
When measured, the largest eigenvalues are observed with higher probability. QPCA can be 
performed in time polynomial in log(d) [42].  

 

• Classification and clustering: Given labelled data, Support Vector Machine for binary 
classification finds two parallel lines (hyperplanes) that mark maximally separating area 
between the two classes. Given M d-dimensional data vectors, the algorithm essentially 
converts this into a constrained problem that results in a set of linear equations involving dot 
products of pairs of all data vectors. This scales polynomially in O(Md). If the data is not linearly 
separable, it is mapped to higher dimensional spaces using feature maps. For Quantum 

Support Vector Machine (QSVM), given we can efficiently prepare, store and retrieve 
classical data as quantum states in a QRAM, HHL algorithm can provide exponential speedup 
in solving these linear equations [43]. A QSVM variant based on Grover’s algorithm has also 
been proposed. A similar speed up is seen for unsupervised clustering algorithms. On 
identifying a centroid for each cluster, we assign each data points by assessing how close or 
similar it is to the centroid. Here, we can exploit quantum computers for their faster inner 
products and distance measures (scales as O(logd) [44].  
 

• Quantum Boltzmann machine (QBM): An unsupervised probabilistic learning model that 
benefits from quantum principles is the Boltzmann machine (BM). It is basically an undirected 
graph/neural network of random binary variables whose output mimics Boltzmann probability 
distribution and whose energy mimics that of an Ising model in thermal equilibrium. 
Optimizing this algorithm corresponds to learning edge weights that produces low energy 
outputs for the desired task, which is usually to estimate the data distribution or to generate 
samples similar to input data distribution. Training BMs is generally quite hard as calculating 
partition functions can be very expensive. Sampling methods are often used for its estimation. 
In QBMs, the nodes become Pauli operators resulting in the network representing a many-
body quantum Hamiltonian with a density matrix based on the corresponding partition 
function. QBMs can only be exactly evaluated on quantum computers, simulating QBMs on 
classical computers is very hard, even with sampling methods. Hence, variational approaches 
are used to solved these. These models have been proposed to be more expressive than their 
classical counterparts and are an active area of research.  
 

• Gradient-based optimization: this technique is vital to the working of various classical machine 
learning models like deep neural networks. Moreover, as stated before, most VQAs also use 
gradient descent/ascent optimization and export their parameter optimization to classical 
computers. Quantum gradient algorithms do exist but generally require fault-tolerant 
quantum computers. Given access to a large number of qubits and assuming smooth 
functions, a Quantum gradient-descent algorithm that uses quantum Fourier transform 
and Grover’s search to compute gradients was recently proposed [46]. For d-dimensional data 



points, it offers quadratic speedup both in d and the number of random initializations of the 
algorithm required to check for local optima.  
 

• One of the most significant QML algorithms are Variational Quantum Algorithms 

(VQAs) (sometimes also termed Hybrid Quantum-Classical algorithms). These directly 
borrow from the working principle of classical machine learning where a parametrized model 
is optimized using data to learn a certain task. Here, the model is a parametrized quantum 

circuit (PQC), and the task is to generally construct/learn a desired quantum state or 
Hamiltonian. Parameter optimization tasks can be exported to classical computers - although 
the usefulness of this export and possible speedups is still under research. This has led to the 
birth of quantum variational learning. The elements of variational learning include 
quantum circuits, quantum embeddings (how to represent classical data as quantum states) 
and quantum. Some notable VQAs include Variational Quantum Eigensolver (VQE), Variational 
Quantum Simulators (VQS) and Quantum Approximate Optimization Algorithm (QAOA). Let 
us also note that machine learning is not limited to inspiring PQCs. Interestingly, machine 
learning techniques can also be directly employed to improve the training of VQAs. For 
example, classical recurrent neural networks were recently used in helping find good 
initialization strategies for quantum neural networks [40].  

 
Other examples include efficient data fitting for “Big data” [47] and quadratic improvements in 
learning efficiency - the number of interaction steps between the learning agent and environment 
needed to learn to obtain the rewards with high probability - in reinforcement learning [48].  
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